58 research outputs found

    Fibroblast Growth Factor-2 and the HIV-1 Tat Protein Synergize in Promoting Bcl-2 Expression and Preventing Endothelial Cell Apoptosis: Implications for the Pathogenesis of AIDS-Associated Kaposi's Sarcoma

    Get PDF
    Kaposi's sarcoma (KS) is a vascular tumor frequently occurring in Human Immunodeficiency Virus- (HIV-) 1-infected individuals. Our previous work indicated that the angiogenic fibroblast growth factor (FGF)-2 and the Tat protein of HIV-1, both expressed in KS lesions of HIV-infected patients, synergize at inducing angioproliferative, KS-like lesions in mice. Here we show that the development of angioproliferative lesions promoted in mice by combined Tat and FGF-2 associates with an increase in the levels of expression of the antiapoptotic Bcl-2 protein. Upregulation of Bcl-2 expression by combined FGF-2 and Tat occurs also in vitro, and this protects human primary endothelial cells from programmed cell death. As Bcl-2 is expressed in human KS lesions in a fashion paralleling the progression of the disease, these findings suggest a molecular mechanism by which Tat and FGF-2 cooperate in KS maintenance and progression in HIV-infected individuals

    HIV-1 tat protein enters dysfunctional endothelial cells via integrins and renders them permissive to virus replication

    Get PDF
    Previous work has shown that the Tat protein of Human Immunodeficiency Virus (HIV)-1 is released by acutely infected cells in a biologically active form and enters dendritic cells upon the binding of its arginine-glycine-aspartic acid (RGD) domain to the α5β1, αvβ3, and αvβ5 integrins. The up-regulation/activation of these integrins occurs in endothelial cells exposed to inflammatory cytokines that are increased in HIV-infected individuals, leading to endothelial cell dysfunction. Here, we show that inflammatory cytokine-activated endothelial cells selectively bind and rapidly take up nano-micromolar concentrations of Tat, as determined by flow cytometry. Protein oxidation and low temperatures reduce Tat entry, suggesting a conformation- and energy-dependent process. Consistently, Tat entry is competed out by RGD-Tat peptides or integrin natural ligands, and it is blocked by anti-α5β1, -αvβ3, and -αvβ5 antibodies. Moreover, modelling-docking calculations identify a low-energy Tat-αvβ3 integrin complex in which Tat makes contacts with both the αv and β3 chains. It is noteworthy that internalized Tat induces HIV replication in inflammatory cytokine-treated, but not untreated, endothelial cells. Thus, endothelial cell dysfunction driven by inflammatory cytokines renders the vascular system a target of Tat, which makes endothelial cells permissive to HIV replication, adding a further layer of complexity to functionally cure and/or eradicate HIV infection

    Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study

    Get PDF
    Introduction: Tat, a key HIV virulence protein, has been targeted for the development of a therapeutic vaccine aimed at cART intensification. Results from phase II clinical trials in Italy (ISS T-002) and South Africa (ISS T-003) indicated that Tat vaccination promotes increases of CD4+ T-cells and return to immune homeostasis while reducing the virus reservoir in chronically cART-treated patients. Here we present data of 92 vaccinees (59% of total vaccinees) enrolled in the ISS T-002 8-year extended follow-up study (ISS T-002 EF-UP, ClinicalTrials.gov NCT02118168).Results: Anti-Tat antibodies (Abs) induced upon vaccination persisted for the entire follow-up in 34/92 (37%) vaccinees, particularly when all 3 Ab classes (A/G/M) were present (66% of vaccinees), as most frequently observed with Tat 30 μg regimens. CD4+ T cells increased above study-entry levels reaching a stable plateau at year 5 post-vaccination, with the highest increase (165 cells/μL) in the Tat 30 μg, 3 × regimen. CD4+ T-cell increase occurred even in subjects with CD4+ nadir ≤ 250 cells/uL and in poor immunological responders and was associated with a concomitant increase of the CD4+/CD8+ T-cell ratio, a prognostic marker of morbidity/mortality inversely related to HIV reservoir size. Proviral DNA load decreased over time, with a half-life of 2 years and an estimated 90% reduction at year 8 in the Tat 30 μg, 3 × group. In multivariate analysis the kinetic and amplitude of both CD4+ T-cell increase and proviral DNA reduction were fastest and highest in subjects with all 3 anti-Tat Ab classes and in the 30 μg, 3 × group, irrespective of drug regimens (NNRTI/NRTI vs. PI). HIV proviral DNA changes from baseline were inversely related to CD4+/CD8+ T-cell ratio and CD4+ T-cell changes, and directly related to the changes of CD8+ T cells. Further, HIV DNA decay kinetics were inversely related to the frequency and levels of intermittent viremia. Finally, Tat vaccination was similarly effective irrespective of the individual immunological status or HIV reservoir size at study entry.Conclusions: Tat immunization induces progressive immune restoration and reduction of virus reservoirs above levels reached with long-term cART, and may represent an optimal vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies

    Original Article

    Get PDF
    The pancreas taken from the frog (Rana nigromaculata) was fixed in 1% OsO_4 and sliced into ultrathin sections for electron microscopic studies. The following observations were made: 1. A great \u27number of minute granules found in the cytoplasm of a pancreatic cell were called the microsomes, which were divided into two types, the C-microsome and S-microsome. 2. Electron microsopic studies of the ergastoplasm showed that it is composed of the microsome granules and A-substance. The microsomes were seen embedded in the A-substance which was either filamentous or membranous. The membranous structure, which was called the Am-membrane, was seen to form a sac, with a cavity of varying sizes, or to form a lamella. 3. The Am-membrane has close similarity to α-cytomembrane of Sjostrand, except that the latter is rough-surfaced. It was deduced that the Am-membrane, which is smooth-surfaced, might turn into the rough-surfaced α-cytomembrane. 4. There was the Golgi apparatus in the supranuclear region of a pancreatic cell. It consisted of the Golgi membrane, Golgi vacuole and. Golgi vesicle. 5. The mitochondria of a pancreatic cell appeared like long filaments, and some of them were seen to ramify. 6. The membrane of mitochondria, i. e. the limiting membrane, consisted of the Ammembrane. The mitochondria contained a lot of A-substances, as well as the C-microsomes and S-microsomes. When the mitochondria came into being, there appeared inside them chains of granules, which appeared like strips of beads, as the outgrowths of the A-substance and the microsome granules attached to the Am-membrane. They are the so-called cristae mitochondriales. 7. The secretory granules originate in the microsomes. They came into being when the microsomes gradually thickened and grew in size as various substances became adhered to them. Some of the secretory granules were covered with a membrane and appeared like what they have called the intracisternal granule of Palade.It seemed that this was a phenomenon attendant upon the dissolution and liqutefaction of the secretory granule. 8. Comparative studies were made of the ergastoplasm of the pancreatic cells from the frogs in hibernation, the frogs artificially hungered, the frogs which were given food after a certain period of fasting, the frogs to which pilocarpine was given subcutaneously, and the very young, immature frogs. The studies revealed that the ergastoplasm of the pancreatic cells greatly varied in form with the difference in nutritive condition and with different developmental stages of the cell. The change in form and structure occured as a result of transformation of the microsomes and A-substance. The ergastoplasm, even after it has come into being, might easily be inactivated if nutrition is defective. The ergastoplasm is concerned in the secretory mechanism, which is different from the secretory phenomenon of the secretory granules. It would seem that structurally the mitochondria have no direct relation to this mechanism

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial

    Full text link

    Kaposi's Sarcoma Lesion Progression in {BKV}-Tat Transgenic Mice Is Increased by Inflammatory Cytokines and Blocked by Treatment with Anti-Tat Antibodies

    No full text
    Kaposi’s sarcoma (KS) is an angioproliferative tumor showing an increased frequency and ag-gressiveness in HIV-infected subjects (AIDS-KS), due to the combined effects of inflammatory cytokines (IC), angiogenic factors, and the HIV-1 Tat protein. While the introduction of effective combined antiretroviral regimens greatly improved AIDS-KS incidence and course, it continues to be an incurable disease and the development of new rational targeted therapies is warranted. We used the BKV/Tat transgenic mouse model to evaluate the effects of IC and anti-Tat antibod-ies (Abs) treatment on KS-like lesions arising in BKV/Tat mice . We demonstrated here that IC-treatment increases the severity and delays the regression of KS-like lesions arising in BKV/Tat mice. Further, anti-Tat Abs reduced KS-like lesion severity developing in IC-treated mice when anti-Tat Abs were administered at an early-stage of lesion development as compared to more advanced lesions. Early anti-Tat Abs treatment also accelerated KS-like lesion regres-sion and reduced the rate of severe-grade lesions. This effect was more evident in the first weeks after Ab treatment, suggesting that a longer treatment with anti-Tat Abs might be even more ef-fective, particularly if administered just after lesion development. Although preliminary, these results are encouraging, and the approach deserves further studies for the development of an-ti-Tat Ab-based therapies for AIDS-KS. Clinical studies specifically addressing the effect of an-ti-Tat antibodies in treating AIDS-KS are not yet available. Nevertheless, the effectiveness of an-ti-Tat antibodies in controlling HIV/AIDS progression, likely due to the neutralization of extra-cellular Tat activities, is suggested by several cross-sectional and longitudinal clinical studies, indicating that anti-Tat Ab treatment or Tat-based vaccines may be effective to treat AIDS-KS pa-tients or prevent the tumor in individuals at risk

    Treatment update for AIDS-related Kaposis sarcoma

    No full text
    corecore