59 research outputs found

    Infrared exploration of the architectural heritage: from passive infrared thermography to <em>hybrid</em> infrared thermography (HIRT) approach

    Get PDF
    Hasta la fecha, los enfoques sobre la termografía infrarroja han sido considerados, o pasivos, o activos. En este último caso, el flujo de calor se obtiene a través de una fuente de calor no natural. El uso de energía solar ha sido recientemente incorporado al enfoque activo gracias a los estudios multitemporales. En este trabajo, se ilustra un enfoque innovador de la termografía híbrida (HIRT). Se combina tanto el componente de tiempo y la fuente de energía solar para recuperar la información cuantitativa así como la profundidad del defecto. Las imágenes térmicas se obtuvieron mediante el análisis de la fachada de la Iglesia de Santa María Collemaggio (L'Aquila, Italia), mientras que los resultados cuantitativos inherentes a las discontinuidades sub-superficiales se obtuvieron gracias al uso de otras técnicas avanzadas. Los resultados experimentales vinculados al enfoque pasivo (es decir, el proceso de mosaico de las imágenes térmicas) derivan de un conjunto de Iglesias antiguas, también incluidas en el estudio, a fin de explicar cuándo y dónde tiene sentido realizar un proceso híbrido

    Thermographic Imaging in Cultural Heritage: A Short Review

    Get PDF
    Over the recent period, there has been an increasing interest in the use of pulsed infrared thermography (PT) for the non-destructive evaluation of Cultural Heritage (CH). Unlike other techniques that are commonly employed in the same field, PT enables the depth-resolved detection of different kinds of subsurface features, thus providing helpful information for both scholars and restorers. Due to this reason, several research activities are currently underway to further improve the PT effectiveness. In this manuscript, the specific use of PT for the analysis of three different types of CH, namely documentary materials, panel paintings–marquetery, and mosaics, will be reviewed. In the latter case, i.e., mosaics, passive thermography combined with ground penetrating radar (GPR) and digital microscopy (DM) have also been deepened, considering their suitability in the open field. Such items have been selected because they are characterized by quite distinct physical and structural properties and, therefore, different PT (and, in some cases, verification) approaches have been employed for their investigations

    Modeling and Measuring Thermodynamic and Transport Thermophysical Properties: A Review

    Get PDF
    The present review describes the up-to-date state of the evaluation of thermophysical prop erties (TP) of materials with three different procedures: modeling (also including inverse problems), measurements and analytical methods (e.g., through computing from other properties). Methods to measure specific heat and thermal conductivity are described in detail. Thermal diffusivity and thermal effusivity are a combination of the previously cited properties, but also for these proper ties, specific measurement and calculation methods are reported. Experiments can be carried out in steady-state, transient, and pulse regimes. For modeling, special focus is given to the inverse methods and parameter estimation procedures, because through them it is possible to evaluate the thermophysical property, assuring the best practices and supplying the measurement uncertainty. It is also cited when the most common data processing algorithms are used, e.g., the Gauss–Newton and Levenberg–Marquardt least squares minimization algorithms, and how it is possible to retrieve values of TP from other data. Optimization criteria for designing the experiments are also mentione

    Evaluating the freeze–thaw phenomenon in sandwich-structured composites via numerical simulations and infrared thermography

    Get PDF
    The water ingress phenomenon in sandwich-structured composites used in the aerospace/aeronautical sector is a current issue. This type of defect can cause in the course of time several other defects at the boundary, such as corrosions, deformations, detachments. In fact, water may change its state of physical matter going towards the freeze–thaw cycle caused by the atmosphere re-entry of, e.g. space probes. In this work, the alveoli of a composite laminate have been filled with water, which was initially transformed into ice. By taking into account, the known quantity of water, the freeze–thaw cycle was simulated by Comsol Multiphysics® software, reproducing exactly the shape of the sandwich as well as the real conditions in which it was subsequently subjected in a climatic chamber. The experimental part consisted of monitoring the front side of the specimen by means of a thermal camera operating into the long-wave infrared spectrum, and by setting both the temperature and the relative humidity of the test chamber according to the values imposed during the numerical simulation step. It was found that the numerical and experimental temperature trends are in good agreement with each other since the model was built by following a physico-chemical point-of-view. It was also seen that the application of the independent component thermography (ICT) technique was able both to retrieve the positions of the defects (i.e. the water inclusions) and to characterize the defects in which a detachment (fabricated between the fibres and the resin) is present; the latter was realized above an inclusion caused by the water ingress. To the best of our knowledge, this is the first time that ICT is applied to satisfy this purpose.Postprint (author's final draft

    Enhanced infrared sparse pattern extraction and usage for impact evaluation of basalt-carbon hybrid composites by pulsed thermography

    Get PDF
    Nowadays, infrared thermography, as a widely used non-destructive testing method, is increasingly studied for impact evaluation of composite structures. Sparse pattern extraction is attracting increasing attention as an advanced post-processing method. In this paper, an enhanced sparse pattern extraction framework is presented for thermographic sequence processing and defect detection. This framework adapts cropping operator and typical component extraction as a preprocessing step to reduce the dimensions of raw data and applies sparse pattern extraction algorithms to enhance the contrast on the defect area. Different cases are studied involving several defects in four basalt-carbon hybrid fiber-reinforced polymer composite laminates. Finally, comparative analysis with intensity distribution is carried out to verify the effectiveness of contrast enhancement using this framework

    The use of pulse-compression thermography for detecting defects in paintings

    Get PDF
    Interest in the conservation of paintings grows year by year. Their periodic inspection is essential for their conservation over the time. Thermographic non-destructive inspection is one technique useful for paintings, but it is essential to be able to detect buried defects while minimising the level of thermal stimulus. This paper describes a pulse-compression infrared thermography technique whereby defect detection is optimized while minimising the rise in temperature. To accomplish this task, LED lamps driven by a coded waveform based on a linear frequency modulated chirp signal have been used on paintings on both a wooden panel and a canvas layer. These specimens contained artificially fabricated defects. Although the physical condition of each painting was different, the experimental results show that the proposed signal processing procedure is able to detect defects using a low temperature contrast

    Defining the Thermal Features of Sub-Surface Reinforcing Fibres in Non-Polluting Thermo–Acoustic Insulating Panels: A Numerical–Thermographic–Segmentation Approach

    Get PDF
    Natural fibres present ozone-friendly solutions in the field of construction. The attenuation of the sound and heat losses is an important feature in such type of materials above all, when used in non-woven fabrics and fibre-reinforced composites. Hemp fibres show robust insulation performance; this research work should be considered beneficial to the development of a non-destructive thermographic methodology, which can address the thermal barrier (typically applied on multi-layer panel) effects. The intent is to assess the integrity of the sub-surface reinforcing glass fibres; such integrity state will help confer the rigidity and the resistance to mechanical stresses. The testing proposed in this study can be further developed in a laboratory right after the manufacturing process of similar type of components. The testing needs preliminary numerical simulations to help guide the selection of the appropriate pre- and post-processing algorithms combined with or without segmentation operators. A set of numerical and experimental tests were performed through controlled thermal stimulation while recording the thermal responses. The study also highlights the advantages, disadvantages, and future development of the presented technique and methodologies

    On the use of phase change materials applied on cork-coconut-cork panels: a thermophysical point of view concerning the beneficial effect in terms of insulation properties

    No full text
    This work explores the potentialities of combining a multi-layer eco-friendly panel with a phase change material coating. Although the work is based on a numerical approach performed by COMSOL Multiphysics® computer program, it can be considered as rigorous, robust, and optimized since the most important parameters added to the model were experimentally evaluated. The scientific soundness was guaranteed by a comparative analysis performed in two different times. The cork-coconut-cork panel was firstly investigated as it was, and secondly it was analysed with a phase change material layer applied on. In the second step, the panel undergone a mechanical process concerning the realization of a subsurface defect simulating a detachment. The aim was based on the conduction of a thermal conductivity analysis to characterize the benefits deriving from the application of the coating, as well as the negative effects introduced by the subsurface defect resembling a potential thermal bridge. The experiments were performed in Italy in a place identified into the manuscript (see "Testing procedure" section) by means of geographical coordinates
    corecore