22 research outputs found

    Testing robustness of relative complexity measure method constructing robust phylogenetic trees for \u3ci\u3eGalanthus\u3c/i\u3e L. Using the relative complexity measure

    Get PDF
    Background: Most phylogeny analysis methods based on molecular sequences use multiple alignment where the quality of the alignment, which is dependent on the alignment parameters, determines the accuracy of the resulting trees. Different parameter combinations chosen for the multiple alignment may result in different phylogenies. A new non-alignment based approach, Relative Complexity Measure (RCM), has been introduced to tackle this problem and proven to work in fungi and mitochondrial DNA. Result: In this work, we present an application of the RCM method to reconstruct robust phylogenetic trees using sequence data for genus Galanthus obtained from different regions in Turkey. Phylogenies have been analyzed using nuclear and chloroplast DNA sequences. Results showed that, the tree obtained from nuclear ribosomal RNA gene sequences was more robust, while the tree obtained from the chloroplast DNA showed a higher degree of variation. Conclusions: Phylogenies generated by Relative Complexity Measure were found to be robust and results of RCM were more reliable than the compared techniques. Particularly, to overcome MSA-based problems, RCM seems to be a reasonable way and a good alternative to MSA-based phylogenetic analysis. We believe our method will become a mainstream phylogeny construction method especially for the highly variable sequence families where the accuracy of the MSA heavily depends on the alignment parameters

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy

    Thermostability at different incubation concentrations.

    No full text
    <p>Residual lipase activity after thermal incubation for 30 minutes at concentrations of (A) 1 µM and (B) 50 µM. Student's t-test were performed to determine the significant differences in thermostability of W211A with respect to BTL2 (*p=0.1 and **p=0.05). </p

    The ANS fluorescence at 460 nm.

    No full text
    <p>The closed circles show the fluorescence from the lipases in 5 mM Tris-Cl at pH 7.0 and the open circles show the effect of 2-propanol. </p

    The Conserved Lid Tryptophan, W211, Potentiates Thermostability and Thermoactivity in Bacterial Thermoalkalophilic Lipases

    No full text
    <div><p>We hypothesize that aggregation of thermoalkalophilic lipases could be a thermostability mechanism. The conserved tryptophans (W211, W234) in the lid are of particular interest owing to their previous involvements in aggregation and thermostability mechanisms in many other proteins. The thermoalkalophilic lipase from <i>Bacillus thermocatenulatus</i> (BTL2) and its mutants (W211A, W234A) were expressed and purified to homogeneity. We found that, when aggregated, BTL2 is more thermostable than its non-aggregating form, showing that aggregation potentiates thermostability in the thermoalkalophilic lipase. Among the two lid mutants, the W211A lowered aggregation tendency drastically and resulted in a much less thermostable variant of BTL2, which indicated that W211 stabilizes the intermolecular interactions in BTL2 aggregates. Further thermoactivity and CD spectroscopy analyses showed that W211A also led to a strong decrease in the optimal and the melting temperature of BTL2, implying stabilization by W211 also to the intramolecular interactions. The other lid mutant W234A had no effects on these properties. Finally, we analyzed the molecular basis of these experimental findings <i>in-silico</i> using the dimer (PDB ID: 1KU0) and the monomer (PDB ID: 2W22) lipase structures. The computational analyses confirmed that W211 stabilized the intermolecular interactions in the dimer lipase and it is critical to the stability of the monomer lipase. Explicitly W211 confers stability to the dimer and the monomer lipase through distinct aromatic interactions with Y273-Y282 and H87-P232 respectively. The insights revealed by this work shed light not only on the mechanism of thermostability and its relation to aggregation but also on the particular role of the conserved lid tryptophan in the thermoalkalophilic lipases.</p> </div

    The structural impact of W211A mutation on the subunit interface.

    No full text
    <p>The subunit interface is rendered by van der Waals surface using the colors; green for chain A, blue for chain B, and <i>red</i> for 211 (W or A) that is found in chain B. The arrows indicate the residues that change conformation upon W211A mutation in (A) chain A and (B) chain B. The representation in (A) has been rotated 180° around the left diagonal axis to obtain (B), and the snapshots were taken from the simulations performed at 75°C.</p

    Zinc Modulates Self-Assembly of <i>Bacillus thermocatenulatus</i> Lipase

    No full text
    Thermoalkalophilic lipases are prone to aggregation from their dimer interface to which structural zinc is very closely located. Structural zinc sites have been shown to induce protein aggregation, but the interaction between zinc and aggregation tendency in thermoalkalophilic lipases remains elusive. Here we delineate the interplay between zinc and aggregation of the lipase from <i>Bacillus thermocatenulatus</i> (BTL2), which is taken to be a representative of thermoalkalophilic lipase. Results showed that zinc removal disrupted the BTL2 dimer, leading to monomer formation and reduced thermostability manifesting as a link between zinc and dimerization that leads to thermostability, while zinc addition induced aggregation. Biochemical and kinetic characterizations of zinc-induced aggregates showed that the aggregates obtained from the early and late stages of aggregation had differential characteristics. In the early stages, the aggregates were soluble and possessed native-like structures, while in the late stages, the aggregates became insoluble and showed fibrillar characteristics with binding affinities for Congo red and thioflavin T. The impact of temperature on zinc-induced aggregation was further investigated, and it was found that the native-like early aggregates could completely dissociate into functional lipase forms at high temperatures while dissociation of the late aggregates was limited. To this end, we report that the zinc-induced aggregation of BTL2 can be reversed by temperature switches and initiated by ordered aggregates in the early stages that gain fibrillar-like features over time. Insights revealed by this work contributes to the knowledge of aggregation mechanisms that exist in thermophilic proteins, reflecting the potential use of metal addition and/or removal to fine-tune aggregation tendency

    Crystal structure of the dimer BTL2.

    No full text
    <p>Two subunits, chain A and B are shown in black and silver, respectively, where the lids are colored in orange for both. The subunit interface is rendered by van der Waals surface: blue for chain A and <i>red</i> for chain B. The lid tryptophans W211 and W234 are shown in green sticks. (B) The aromatic cluster and (C) the network of hydrogen bonds were shown in stick models (C: cyan, N: blue, O: red).</p

    W211 in the active conformation.

    No full text
    <p>The domain formed by W211 in the open-active conformation (PDB ID: 2W22) is rendered by van der Waals surface. H87-G88 (green) and P232-V233-S236 (yellow) tightly packs the side chain of W211 colored in (red). </p
    corecore