20 research outputs found

    Trade-offs in flagella propulsion, feeding and stealth*

    No full text
    Flagellates are key components of aquatic microbial food webs. Their flagella propel the cell through the water and generate a feeding current from which bacterial prey is harvested. However, the activity of the flagella also disturbs the ambient water, thereby attracting the flagellate’s flow-sensing predators. Here we use computational fluid dynamics to explore the optimality and fluid dynamics of the diverse arrangements, beat patterns, and external morphologies of flagella found among free-living flagellates in light of the fundamental propulsion-foraging-predation-risk trade-off. We examine 5-μm-sized representative model organisms with different resource acquisition modes: autotrophs relying on photosynthesis and uptake of nutrient molecules, phagotrophs that feed on bacteria, and mixotrophs that employ both strategies. For all types, the transport of inorganic molecules is diffusion dominated, and the flagellum in autotrophic species therefore mainly serves propulsion purposes. Flagellates with a single, naked flagellum found among non-foraging swarmer stages have a waveform (less than one wave) that is optimized for swimming and stealth but inefficient for feeding. Flagellates with a hairy flagellum typically have many waves, which optimizes swimming and stealth but is suboptimal for foraging, leading to a design trade-off. However, when compared with naked flagella, the presence of hairs allows an efficient feeding current, making these primarily phagotrophic flagellates the most efficient and dominant bacterivores in the ocean. Autotrophic biflagellates have wave patterns optimized for both propulsion and foraging but conflicting weakly with stealth. Finally, the mixotrophic haptophytes are optimized for foraging, conflicting with both stealth and propulsion. This is largely due to the long haptonema that improves prey collection but at the cost of stealth and propulsion

    Hydrodynamics of Prey Capture and Transportation in Choanoflagellates

    No full text
    Choanoflagellates are unicellular microscopic organisms that are believed to be the closest living relatives of animals. They prey on bacteria through the act of the continuous beating of their flagellum, which generates a current through a crown-like filter. Subsequently, the filter retains bacterial particles from the suspension. The mechanism by which the prey is retained and transported along the filter remains unknown. We report here on the hydrodynamic effects on the transportability of bacterial prey of finite size using computational fluid dynamics. Here, the loricate choanoflagellate Diaphaoneca grandis serves as the model organism. The lorica is a basket-like structure found in only some of the species of choanoflagellates. We find that although transportation does not entirely rely on hydrodynamic forces, such forces positively contribute to the transportation of prey along the collar filter. The aiding effects are most possible in non-loricate choanoflagellate species, as compared to loricate species. As hydrodynamic effects are strongly linked to the beat and shape of the flagellum, our results indicate an alternative mechanism for prey transportation, especially in biological systems where having an active transport mechanism is costly or not feasible. This suggests an additional potential role for flagella in addition to providing propulsion and generating feeding currents

    Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue

    No full text
    Background: One of the most major obstacles of ovarian tissue vitrification is suboptimal developmental competence of follicles. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) and their tissue inhibitors TIMP-1 and TIMP-2 are involved in the remodeling of the extracellular matrix in the ovaries. Objective: This study aimed to evaluate the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 genes in the preantral follicles derived from vitrified mouse ovaries. Materials and Methods: In this experimental study, the gene expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the isolated preantral follicles derived from fresh and vitrified ovaries of 14-16 days old female mice through real time qRT-PCR was evaluated. Developmental parameters, including survival rate, growth, antrum formation and metaphase II oocytes were also analyzed. Results: The developmental parameters of fresh preantral follicles were significantly higher than vitrified preantral follicles. The TIMP-1 and MMP-9 expression levels showed no differences between fresh and vitrified preantral follicles (p=0.22, p=0.11 respectively). By contrast, TIMP-2 expression significantly decreased (p=0.00) and MMP-2 expression increased significantly (p=0.00) in vitrified preantral follicles compared with to fresh ones. Conclusion: Changes in expression of MMP-2 and TIMP-2 after ovarian tissues vitrification is partially correlated with decrease in follicle development
    corecore