18 research outputs found

    Experiment Study on Bed Topography around Wedged Bandal-like, Bandal-like and Impermeable Spur dike Structures at 180 Degree Bend in Non-Submerged Conditions

    Get PDF
    Due to scouring problems in impermeable spur dikes, which compromise structural strength and stability and as a result repair and maintenance costs increase, an alternative method of scouring is needed to protect the river bank. In this area, bandal-like structure can be used. This structure is a combination of an impermeable spur dike and a permeable spur dike. The upper part is impermeable causes the upper half of the flow run towards the center and the inner wall and the lower part is permeable enabling the lower half of the stream passes through it (Rahman et al., 2003a, b). The lower part causes the flow to slow down and reduces speed, and because the flow near the bed has a higher concentration, it leads to settling sediments in the downstream of the river near the coast. On the other hand, because of the flow through the lower half, the power of downstream flows are reduced compared to the impermeable spur dike and the horseshoe vortices are vanished. Therefore, the scouring rate in the bandal-like structure is less than the impermeable spur dike (Zhang et al., 2010; Teraguchi et al., 2011b)Regarding that the scouring rate, the bandal-like structure is less than an impermeable spur dike therefore, its use has been suggested by some researchers. Since the sedimentation rate behind the bandal-like structure is less than the impermeable spur dike, in the present study, a new structure called the wedge bandal-like is proposed to enhance the sedimentation of the bandal-like. Wedge bandal-like structure is constructed of a bandal-like structure and a repellent impermeable triangular spur dike. The purpose of using this structure is to use both the advantages of the bandal-like structure as well as the benefits of repellent impermeable triangular spur dike, for deviation of flow and sediment transport to the back of the structure and sedimentation. Both structures cause the secondary flow of the surface to move towards the outer arc before moving to the outer shore down the bottom and practically shore the coastal tail into middle areas

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Estimating Longitudinal Dispersion Coefficient of Pollutants Using Adaptive Neuro-Fuzzy Inference System

    No full text
    Longitudinal dispersion coefficient in rivers and natural streams is usually estimated by simple inaccurate empirical relations because of the complexity of the phenomenon. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is used to develop a new flexible tool for predicting the longitudinal dispersion coefficient. The system has the ability to understand and realize the phenomenon without the need for mathematical governing equations.. The training and testing of this new model are accomplished using a set of available published filed data. Several statistical and graphical criteria are used to check the accuracy of the model. The dispersion coefficient values predicted by the ANFIS model compares satisfactorily with the measured data. The predicted values are also compared with those predicted by existing empirical equations reported in the literature to find that the ANFIS model with R2=0.99 and RMSE=15.18 in training stage and R2=0.91 and RMSE=187.8 in testing stage is superior in predicting the dispersion coefficient to the most accurate empirical equation with R2=0.48 and RMSE=295.7. The proposed methodology is a new approach to estimating dispersion coefficient in streams and can be combined with mathematical models of pollutant transfer or real-time updating of these models

    Spatiotemporal Characterization and Analysis of River Morphology Using Long-Term Landsat Imagery and Stream Power

    No full text
    Meandering rivers are among the most dynamic Earth-surface systems, which generally appear in fertile valleys, the most valuable lands for agriculture and human settlement. Landsat time series and morphological parameters are complementary tools for exploring river dynamics. Karun River is the most effluent and largest meandering river in Iran, which keeps the Karun’s basin economy, agriculture, and industrial sections alive; hence, investigating morphological changes in this river is essential. The morphological characteristics of Karun have undergone considerable changes over time due to several tectonic, hydrological, hydraulic, and anthropogenic factors. This study has identified and analyzed morphological changes in Karun River using a time series of Landsat imagery from 1985–2015. On that basis, morphological dynamics, including the river’s active channel width, meander’s neck length, water flow length, sinuosity index, and Cornice central angle, were quantitatively investigated. Additionally, the correlation between the stream power and morphological factors was explored using the data adopted from the hydrometric stations. The results show that the dominant pattern of the Karun River, due to the sinuosity coefficient, is meandering, and the majority of the river falls in the category of developed meander rivers. Moreover, the number of arteries reduced in an anabranch pattern, and the river has been migrating towards the downstream and eastern sides since 1985. This phenomenon disposes a change in the future that can be hazardous to the croplands and demands specific considerations for catchment management
    corecore