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ABSTRACT 

 

 The purpose of this paper is to present a 2D depth-average model for simulating 

and examining unsteady flow patterns in open channel bends. In particular, this paper 

proposes a 2D depth-averaged model that takes into account the influence of secondary 

flow phenomenon through the calculation of the dispersion stresses. The dispersion terms 

arisen from the integration of the product the discrepancy between the mean and the actual 

vertical velocity distribution were included in the momentum equations to take into 

account the effect of secondary current. This model used time-splitting method for solving 

advection, diffusion and other momentum equations terms.  The proposed model uses an 

orthogonal curvilinear coordinate system to efficiently and accurately simulate the flow 

field with irregular boundaries and used finite volume projection method approach for 

solving the governing equation in a staggered grid. Two sets of experimental data were 

used to demonstrate the model capabilities. The comparison of the simulated velocity and 

water surface elevation with the measurements shows good agreement and indicates that 

the inclusion of the dispersion terms has improved the simulation results. 

 

Keywords: Unsteady flow, Open channels, two dimensional model, Numerical models, 

Meander, bend. 

 

1. INTRODUCTION 

 

Flow characteristics in meandering channels are much more complicated than those 

in straight reaches. Due to the secondary flow, flow passing through meandering channel is 

of a three-dimensional nature. 

Secondary flow results from the imbalance between the transverse water surface 

gradient force and centrifugal force over the depth due to the vertical variation of the 

primary flow velocity. In other word, the inward pressure gradient near the bed prevails 

over the centrifugal force resulting in an inward flow along the bed and outward flow near 

the water surface.  

Pioneering investigation of the flow phenomena in open channel bends are 

generally attributed to Thompson (1876) who observed the spiral motion inherent in a 

channel bend by introducing seeds and dyes into the flow. Since then, many studies have 

been conducted on flows in bends [e.g., Mockmore (1943), Shukhry (1949), Rozovskii 

(1961), and Yen (1965)]. 



To accurately simulate flow in meandering channels, flow passing through 

meandering channels requires a 3D hydrodynamic model. Many 3D numerical models 

have been developed (Leschziner and Rodi, 1979; Sinha et al. 1998; Wu et al. 2000; 

Meselhe and Sotiropoulos 2000) to simulate the complicated spiral flow motion in river 

bends. When dealing with the practical engineering problems, such as alluvial geomorphic 

processes, it is not computationally efficient to use 3D models. Instead, researchers 

(Howard 1984; Smith 1984; Johannesson and Parker 1989a, b; Nelson and Smith 1989; 

Odgaard 1989; Shimizu and Itakura 1989; Molls and Chaudhry 1995; Ye and 

McCorquodal 1997; Lien et al. 1999; Darby et al. 2002; Hsieh and Yang 2003) applied two 

dimensional (2D) models to simulate meandering channel flow. 

The 2D depth-averaged models used can be classified into two types, the 

conventional model and the bend-flow model (Hsieh and Yang, 2003). The major 

difference between the two is the treatment of dispersion stress terms in the momentum 

equations. Integrating along the vertical direction of velocity from the depth-averaged 

values represents the dispersion stress terms. The conventional model assumes that vertical 

velocity is uniform while the secondary current effect is ignored. On the other hand, the 

bend flow model takes into account the influence of the dispersion stress terms arisen from 

the integration of the products of discrepancy between the mean and the adopted 

secondary-current velocity distribution. 

Conventional models have been widely used by many researchers. Molls and 

Chaudhry (1995) proposed the concept of interacted effective stresses, which consists of 

the laminar viscosity stresses and the turbulent stresses, to simulate the experimental bend-

flow data reported by Rozovskii (1961).  

Ye and McCorquodal (1997) proposed a fractional two-step implicit model to 

simulate the experimental bend-flow data reported by Chang (1971). Ye and McCorquodal 

(1997) and Bui Minh Duc et al. (2004) increased the coefficient of exchange of momentum 

in the horizontal direction, i.e. the effective eddy viscosity, to account for the effects of the 

secondary motion. For the same reason, when using conventional models to simulate mass 

transport, it is necessary to reduce the Schmidt number to correct the dispersion effects 

(Jian Ye and Mc Corquodale 1997;  Duan 2004). Althogh this simulation showed good 

agreement compared to the experiment data, conventional models are not adequate for 

mass transport in curved channels since the Schmidt number varies in wide range and 

requires calibration. 

Flokestra (1977) indicate the need of dispersion stress terms for bend flow 

simulation. Finnie et al. (1999) later followed Flagstar's concept to solve a transport 

equation for streamwise vortices and incorporated the so-called associated acceleration 

terms, i.e., dispersion stress terms, to the depth-averaged equations. The inclusion of these 

acceleration terms results in improved predictions of depth-averaged velocity in bend-flow 

simulation. Lien et al. (1999a) further showed that the simulated results without 

considering the dispersion stress terms are consistent with the potential theory, in which 

the velocity distribution is skewed inward and away from the sidewalls and approaches to 

the free-vortex distribution. 

Hsieh and Yang (2003) studied the suitability of 2D models for bend flow 

simulation by using a conventional model and a bend-flow model. The analysis of 

simulation results indicated that the maximum relative difference in longitudinal velocity is 

mainly related to the relative strength of the secondary current and the relative length of 

the channel. Empirical relations connecting the maximum relative difference in 

longitudinal velocities, the relative strength of the secondary current, and the relative 

length of the channel, were proposed to be used as a guideline for model users.  



The purpose of this paper is to present an unsteady 2D depth-averaged flow model 

considering the dispersion stress terms to simulate the bend flow field. The model uses an 

orthogonal curvilinear coordinate system to efficiently simulate the flow field with 

irregular boundary. Numerically, the proposed model employes a projection and time-

splitting methods for solving the flow governing equations. Two sets of experimental data 

measured by de Vriend and Koch (1977) and Rozovskii (1961) are used to examine the 

capabilities of the proposed model.  

 

2. FLOW SIMULATION 

 

Under the assumption of incompressible fluid, constant viscosity, and hydrostatic 

pressure distribution over the depth, the depth averaged equations can be obtained from 

integrating Navier-Stokes equation along water depth using the kinematics boundary 

conditions. The unsteady 2D depth-average flow governing equations including the basic 

continuity and momentum equations can, respectively, be written in orthogonal curvilinear 

(s, n) coordinates as follows: 

Continuity equation: 
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and Momentum equation 

in s-direction: 
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and in n-direction: 

 

     

( ) ( )

nsns

uvvv

bn

sn

R

p

n

E

R

p

s

E

n

p

R

E

s

p

R

E

n

q
E

ns

q
E

s

n
gh

s

D

n

D

hR

qp

hR

pq
qv

n
qu

st

q

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

++
−

++
∂
∂

+
∂
∂

+
∂
∂

22

2
22 ξτ

                  (3) 

 

where p=uh and q=vh  are mass fluxes in the s and n direction, respectively; bnbs ττ ,  are 

the components of the bed-shear stress in the s and n direction that can be written as 

follows: 
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where s and n are orthogonal curvilinear coordinates in streamwise axis and transverse 

axis, respectively; u and v  are depth-averaged velocity components in s and n direction, 

respectively; t is time; ξ is water surface elevation; h is flow depth; sR  and nR  are radius 



of curvature of s and n axis, respectively; C  is Chezy coefficient; E is eddy viscosity 

coefficient and uvvvuu DDD ,,  are dispersion terms, their expressions are as follows  
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where bz  bed elevation and u and v are are velocity components in the streamwise and  

transverse direction, respectively. 

 

2.1. Turbulent Model 

 

In this model, The Smagorinsky viscosity formulation with the following expression are 

adopted 
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Where ∆ is grid spacing and Cs is a constant to be chosen in the interval of 0.25 to 1.0. 

 

 

2.2. Dispersion Terms in Momentum Equations 

 

Because of the secondary flow, the integration of his product of the discrepancy 

between the depth-averaged and the actual velocity can no longer be neglected. To drive 

the mathematical expressions of these terms. In this model, the velocity profiles in the 

streamwise and transverse direction proposed by de Vriend (1977) and Rozovskii (1957) 

are adopted, respectively 
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Where ( ) hzz b /−=ζ  is dimensionless distance from the bed, zb is bed elevation, 

C is Chezy Coefficient, g is gravitational acceleration and κ is Von Karman constant. 



According to (7) and (8), the primary velocity profile is assumed to follow a 

logarithmic distribution, and the transverse velocity profiles are a combination of the 

secondary flow. It is obvious that only the secondary flow due to the curvature of the bend 

is considered in the formulation of the transverse velocity profile. Such consideration of 

transverse secondary flow is a main factor to shift the streamwise momentum from the 

inner region of a bend toward the outer region and to increase the main velocity near the 

outer bank. In addition, the effect of the secondary flow on the streamwise velocity profile 

is neglected, and these velocity profiles, used in the model, are inadequate for a reverse 

secondary eddy that occurred near the surface at the outer bank. Substituting Eqs. (7) and 

(8) into Eqs. (6)  yields : 
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These dispersion terms included in equations (2) and (3) to solve for flow velocity, 

Where 
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Where ( )( )ζζζ ln18.0)()( 24 ++= FF . Note that equations (15) and (16) can be 

integrated numerically using the trapezoidal rule. 

 

3. NUMERICAL ALGORITHM 

 

The present model used finite volume projection method approach for solving the 

governing equation in a staggered grid. The key feature of this method is to solve 

governing equation in three steps. The first step is to compute the mass fluxes (p and q) in 

the momentum equations without considering the pressure terms and continuity equation. 

The second step is to compute the water elevation with implicit scheme in two stages. The 

first stage is to compute the water elevation in time step t+1/2 by solving continuity 

equation and pressure term equation (17) that remaining from momentum equations in s 

direction where time step t+1/2 denotes the intermediate step between t and t+1. The 

second stage of second step is to compute water elevation in time step t+1 by solving 

continuity equation and pressure term equation (18) that remaining from momentum 

equations in n direction.   
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The last step is to modify the provisional mass fluxes using water elevation value 

and equations (17) and (18). They are expressed sequentially as follows: 

First step: 
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Similarly, the difference form of mass flux component in n direction can be derived 

from equation (3). Superscript t denotes the known variables at time step t, and superscript 

t+1 denotes the unknown variables at time step t+1. Subscript j, k denotes the variables 

position in s and n direction, respectively in computational domain. 

The first step includes convection and diffusion terms companied with additional 

terms in the momentum equations due to the curving grid line and dispersion terms. This 

model used time-splitting method for solving momentum equations terms. In this method it 

has been assumed that the influence of different processes might best be computed 

separately as several stages in a several different scheme. It is important to note that in the 

next stage the input for computations is taken from the first process and not from the actual 

preceding time level. In the first step, advection and diffusion terms in momentum 

equations are solved using the second order explicit from and implicit schemes, 

respectively. Other terms in these equations are solved using implicit scheme. In the next 

step, mass fluxes 2/12/1 , ++ tt qp  are computed using equations (21) and (22). 

 

3.1. Second step, First stage 
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Using equation (17) 
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Water elevation in time step t+1/2 i.e. 2/1+tξ computed with substituting equations 

(21) and (22) into equation (20). 



 

3.2. Second step, Second stage 
 

Continuity 
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using equation (18) 
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Water elevation in time step t +1, 1+tξ  is computed with substituting equations (24) 

and (25) into equation (23). 

 

3.3. Last step 

 

Using equations (21),(22) and equations (24),(25) through water elevation in time 

step t+1 mass fluxes p and q in time step n+1 are computed. 

   

3.4. Boundary Condition 

 

Three types of boundaries, namely, the inlet or upstream end, outlet or downstream 

end, and solid walls are considered. Discharge hydrograph per unit width can be specified 

at the inlet section. Water surface elevation can be specified at the outlet section. At the 

solid boundaries the flow velocity is assumed to be zero.  

 

4. RESULTS 

4.1. Model Verifications 

 

To test and verify the performance and the capabilities of the proposed model two 

sets of experimental data on bend flow conducted by de Vriend (1979) and Rozovskii 

(1961) are adopted. These selected channels belong to mildly curved and sharply curved 

channels, respectively. Data regarding the channel dimensions and flow conditions are 

summarized in Table 1. 

 

4.2. Flow in a mildly curved channel 

 In de Vriend (1979) experiment, the channel consists of a 1.7 m wide flume having 

a U-shaped plan. With a horizontal bottom and vertical sidewalls, the radius of curvature of 

the flume axis in the bend is 4.25 m and the upstream and downstream straight reaches 

have an effective length of about 6.0 m. The ratio of radius of curvature to channel width is 

3.5. The discharge at the inlet is 0.0671 m
3
/s. The averaged velocity is 0.202 m/s, and the 

averaged flow depth is 0.1953 m. 

"Figure 1(a)" shows the velocity redistribution across the channel width along the 

bend without considering the dispersion stresses. The simulated results are consistent with 

the potential theory by which the velocity is inversely proportional to the radius of the 

curvature. Hence, the flow velocity along the channel bend is higher in the inner bank 

region than that in the outer bank region, as clearly shown in "figure 1(a)" while the flow 

velocity at the inner and outer banks are almost equal at the inlet of the bend. 



  

Table1. Channel geometry and flow parameters of simulated cases 

 Discharge Width Depth Velocity  

Case Q (m
3
/s) B (m) d (m)  V (m/s) R/B 

De Vriend (1979) 0.0671 1.7 0.1953 0.202 3.5 

Rozovskii (1961) 0.0123 0.8 0.053 0.265 1.0 

  

0.2 m/s

0.2 m/s

 
Figure 1 Velocity redistribution by numerical simulation for mildly curve: (a) ignoring 

secondary flow; (b) taking secondary flow into account 

 

If the dispersion stresses are included in the bend flow simulation, they act as sink 

or source in the momentum equation, which cause the transverse convection of momentum 

to shift from the inner bank to the outer bank (Kalkwijk and de Vriend 1980; de Vriend 

(a)  

(b) 



1981). "Figure 1(b)" shows the simulated results with dispersion stress, which clearly 

demonstrate a shift of the maximum main velocity along the channel bend from the inner-

bank region toward the outer bank region. However, for this mild bend, the radius of 

channel curvature is much larger than the width of the channel and thus the effect of 

secondary flow is very weak. 

The comparison of simulated water surface elevation with the measurement at the inner 

bank and outer bank for the cases with or without the dispersion terms is plotted in "figure 

2". 

It shows that water surface elevation at the outer bank is at much higher level than 

that in the inner bank throughout the bend. The rise of flow at the outer bank results from 

the centrifugal force. One also can discern a little difference between the result with and 

without the dispersion terms. In general, the simulated water elevations are in agreement 

with the measurement at the inner and outer banks, separately. The difference between the 

simulated results with and without secondary flow is not significant because the secondary 

flow effect in mild bend is weak. 

 
Figure 2 Comparison between sidewall flow depth with and without secondary flow; 

mildly curved

 

 

4.3. Flow in a sharply curved channel 

The present 2D model was also applied to the experimental results obtained by 

Rozovskii (1961) in a sharply curved flume. The flume includes a 180 curved reach with a 

6 m long straight approach and a 3 m long straight exit. The ratio of mean radius of 

curvature to width is 1.0. The width of the channel is 0.8 m. The cross section of the bend 

is rectangular and connected to the straight inlet and outlet reaches of the same cross 

section. Water depth at the downstream end is 0.053 m, and the discharge is 0.0123 m/s.   

"Figure 3(a)" and "3(b)" show the computed velocity distribution across the 

channel width with and without secondary flow effects, respectively. As shown in figure 

3(a), the velocity at the inner bank becomes larger while that at the outer bank becomes 

smaller when the flow enters the bend. Such a flow pattern prevails through the entire 

bend. The simulated velocity distribution becomes relatively uniform after a distance 

downstream of the bend exit. When considering the secondary flow effect, "figure 3(b)" 

indicates different velocity distributions after the flow enters the bend. In this situation the 



maximum main velocity along the channel bend shift of from the inner bank region toward 

the outer bank region.  

"Figure 3(b)" shows that the velocity distribution with the secondary flow effect is 

no longer uniform in the straight cannel even after the flow exits the bend. The velocity 

near the outer bank region abruptly speeds up, and the corresponding velocity near the 

inner-bank region decelerates. This phenomenon can be explained by the decline of the 

transverse slope of the water surface and the release of the remaining additional 

momentum by the secondary flow effect when the radius of curvature at the bend exit 

abruptly changes to infinity. 

0.4 m/s

 

 
Figure 3 Velocity redistribution by numerical simulation for sharp curve, (a) without 

secondary flow, (b) with secondary flow 

 

"Figure 4" shows the comparison of simulated surface elevation with and without 

the dispersion terms along the channel length. It can be seen that, along the bend, the water 

level rises at the outer bank and falls at the inner bank. Note that, without the secondary 

flow effect, the water level will be underestimated at the outer bank. Furthermore, the 

consideration of the secondary flow effect and decrease the slope of super elevation 

between the inner bank and outer bank as observed in measured data.  

This result showed that the impact of secondary flow on the depth-averaged flow 

distribution and water surface elevations becomes more visible with increasing channel 

curvature.

 

(a) 

(b) 



 
Figure 4 comparison between sidewall flow depth with and without secondary flow; 

sharply curved 

 

5. DISCUSSION 

This paper presents an unsteady 2D depth averaged model developed using 

orthogonal curvilinear coordinate system. The model takes into account vertical velocity 

profiles in a bend using them to capture the effect of dispersion stress on the floor. 

Dispersion stress terms serve as a sink or source in the momentum conservation equations 

are needed to calculate the transverse convection of momentum caused by the secondary 

flow along a channel bend (Kalkwijk and de Vriend 1980; de Vriend 1981). If the 

dispersion stress terms are neglected, the government equations reduce to a conventional 

depth averaged equation assuming uniform velocity over depth. In other words, the model 

presented herein should be more applicable for practical application in bend flow modeling 

than the conventional depth averaged models because of its ability to account for the 

secondary flow effect.  

Two sets of experimental bend-flow data, one with mild bends and one with sharp 

bends, were used to demonstrate the capabilities of the proposed model. The simulated 

water elevation results and experimental data agree well in both cases of the mildly and 

sharp curved channel, the computed results show that the secondary flow effect has been 

properly represented by calculating the dispersion stresses. In short, the dispersion stresses 

play an important role in accurately simulating or predicting flow fields in sharp bends as 

well as in mild bends.       
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