11 research outputs found

    Glycoproteins E and I of Marek's Disease Virus Serotype 1 Are Essential for Virus Growth in Cultured Cells

    No full text
    The role of glycoprotein E (gE) and gI of Marek's disease virus serotype 1 (MDV-1) for growth in cultured cells was investigated. MDV-1 mutants lacking either gE (20ΔgE), gI (20ΔgI), or both gE and gI (20ΔgEI) were constructed by recE/T-mediated mutagenesis of a recently established infectious bacterial artificial chromosome (BAC) clone of MDV-1 (D. Schumacher, B. K. Tischer, W. Fuchs, and N. Osterrieder, J. Virol. 74:11088–11098, 2000). Deletion of either gE or gI, which form a complex in MDV-1-infected cells, resulted in the production of virus progeny that were unable to spread from cell to cell in either chicken embryo fibroblasts or quail muscle cells. This was reflected by the absence of virus plaques and the detection of only single infected cells after transfection, even after coseeding of transfected cells with uninfected cells. In contrast, growth of rescuant viruses, in which the deleted glycoprotein genes were reinserted by homologous recombination, was indistinguishable from that of parental BAC20 virus. In addition, the 20ΔgE mutant virus was able to spread from cell to cell when cotransfected into chicken embryo fibroblasts with an expression plasmid encoding MDV-1 gE, and the 20ΔgI mutant virus exhibited cell-to-cell spread capability after cotransfection with a gI expression plasmid. The 20ΔgEI mutant virus, however, was not able to spread in the presence of either a gE or gI expression plasmid, and only single infected cells were detected by indirect immunofluorescence. The results reported here demonstrate for the first time that both gE and gI are absolutely essential for cell-to-cell spread of a member of the Alphaherpesvirinae

    One- and two-component colloidal glasses under transient shear

    No full text

    First-line antiretroviral therapy with a protease inhibitor versus non-nucleoside reverse transcriptase inhibitor and switch at higher versus low viral load in HIV-infected children: An open-label, randomised phase 2/3 trial

    No full text
    Background: Children with HIV will be on antiretroviral therapy (ART) longer than adults, and therefore the durability of first-line ART and timing of switch to second-line are key questions. We assess the long-term outcome of protease inhibitor and non-nucleoside reverse transcriptase inhibitor (NNRTI) first-line ART and viral load switch criteria in children. Methods: In a randomised open-label factorial trial, we compared effectiveness of two nucleoside reverse transcriptase inhibitors (NRTIs) plus a protease inhibitor versus two NRTIs plus an NNRTI and of switch to second-line ART at a viral load of 1000 copies per mL versus 30 000 copies per mL in previously untreated children infected with HIV from Europe and North and South America. Random assignment was by computer-generated sequentially numbered lists stratified by age, region, and by exposure to perinatal ART. Primary outcome was change in viral load between baseline and 4 years. Analysis was by intention to treat, which we defined as all patients that started treatment. This study is registered with ISRCTN, number ISRCTN73318385. Findings: Between Sept 25, 2002, and Sept 7, 2005, 266 children (median age 6\ub75 years; IQR 2\ub78-12\ub79) were randomly assigned treatment regimens: 66 to receive protease inhibitor and switch to second-line at 1000 copies per mL (PI-low), 65 protease inhibitor and switch at 30 000 copies per mL (PI-higher), 68 NNRTI and switch at 1000 copies per mL (NNRTI-low), and 67 NNRTI and switch at 30 000 copies per mL (NNRTI-higher). Median follow-up was 5\ub70 years (IQR 4\ub72-6\ub70) and 188 (71%) children were on first-line ART at trial end. At 4 years, mean reductions in viral load were -3\ub716 log10copies per mL for protease inhibitors versus -3\ub731 log10copies per mL for NNRTIs (difference -0\ub715 log10copies per mL, 95% CI -0\ub741 to 0\ub711; p=0\ub726), and -3\ub726 log10copies per mL for switching at the low versus -3\ub720 log10copies per mL for switching at the higher threshold (difference 0\ub706 log10copies per mL, 95% CI -0\ub720 to 0\ub732; p=0\ub756). Protease inhibitor resistance was uncommon and there was no increase in NRTI resistance in the PI-higher compared with the PI-low group. NNRTI resistance was selected early, and about 10% more children accumulated NRTI mutations in the NNRTI-higher than the NNRTI-low group. Nine children had new CDC stage-C events and 60 had grade 3/4 adverse events; both were balanced across randomised groups. Interpretation: Good long-term outcomes were achieved with all treatments strategies. Delayed switching of protease-inhibitor-based ART might be reasonable where future drug options are limited, because the risk of selecting for NRTI and protease-inhibitor resistance is low. Funding: Paediatric European Network for Treatment of AIDS (PENTA) and Pediatric AIDS Clinical Trials Group (PACTG/IMPAACT). \ua9 2011 Elsevier Ltd
    corecore