7,861 research outputs found

    New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) was a warming event that interrupted the long-term Eocene cooling trend. While this event is well documented at high southern and mid-latitudes, it is poorly known from low latitudes and its timing and duration are not well constrained because of problems of hiati, microfossil preservation and weak magnetic polarity in key sedimentary sections. Here, we report the results of a study designed to improve the bio-, magneto- and chemostratigraphy of the MECO interval using high-resolution records from two low-latitude sections in the Atlantic Ocean, Ocean Drilling Program (ODP) Sites 1051 and 1260. We present the first detailed benthic foraminiferal stable isotope records of the MECO from the low latitudes as well as the biostratigraphic counts of Orbulinoides beckmanni and new magnetostratigraphic results. Our data demonstrate a ~ 750 kyr-long duration for the MECO characterized by increasing δ13C and decreasing δ18O, with minimum δ18O values lasting ~ 40 kyr at 40.1 Ma coincident with a short-lived negative δ13C excursion. Thereafter, δ18O and δ13C values recover rapidly. The shift to minimum δ18O values at 40.1 Ma is coincident with a marked increase in the abundance of the planktonic foraminifera O. beckmanni, consistent with its inferred warm-water preference. O. beckmanni is an important Eocene biostratigraphic marker, defining planktonic foraminiferal Zone E12 with its lowest and highest occurrences (LO and HOs). Our new records reveal that the LO of O. beckmanni is distinctly diachronous, appearing ~ 500 kyr earlier in the equatorial Atlantic than in the subtropics (40.5 versus 41.0 Ma). We also show that, at both sites, the HO of O. beckmanni at 39.5 Ma is younger than the published calibrations, increasing the duration of Zone E12 by at least 400 kyr. In accordance with the tropical origins of O. beckmanni, this range expansion to higher latitudes may have occurred in response to sea surface warming during the MECO and subsequently disappeared with cooling of surface waters

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic

    Get PDF
    Oligotrophic regions represent up to 75% of Earth's open-ocean environments. They are thus areas of major importance in understanding the plankton community dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic foraminifera and 11 planktonic foraminifer species measured at the Oceanic Flux Program (OFP) time series site in the oligotrophic Sargasso Sea, subtropical western North Atlantic Ocean. Foraminifera flux was measured at 1500 m water depth, over two ~ 2.5-year intervals: 1998–2000 and 2007–2010. We find that foraminifera flux was closely correlated with total mass flux, carbonate and organic carbon fluxes. We show that the planktonic foraminifera flux increases approximately 5-fold during the winter–spring, contributing up to ~ 40% of the total carbonate flux. This was primarily driven by increased fluxes of deeper-dwelling globorotaliid species, which contributed up to 90% of the foraminiferal-derived carbonate during late winter–early spring. Interannual variability in total foraminifera flux, and in particular fluxes of the deep-dwelling species (Globorotalia truncatulinoides, Globorotalia hirsuta and Globorotalia inflata), was related to differences in seasonal mixed layer dynamics affecting the strength of the spring phytoplankton bloom and export flux, and by the passage of mesoscale eddies. As these heavily calcified, dense carbonate tests of deeper-dwelling species (3 times denser than surface dwellers) have greater sinking rates, this implies a high seasonality of the biological carbonate pump in oligotrophic oceanic regions. Our data suggest that climate cycles, such as the North Atlantic Oscillation, which modulates nutrient supply into the euphotic zone and the strength of the spring bloom, may also in turn modulate the production and flux of these heavily calcified deep-dwelling foraminifera by increasing their food supply, thereby intensifying the biological carbonate pump

    An Evaluation of the Effects of a Functional Energy Drink on Post-lunch and Early Evening Driving Performance

    Get PDF
    This paper reports the results of a pilot study designed to evaluatethe effect of an energy drink on mental performance and driving. 24 healthysubjects were tested after consumption of a placebo or an energy drink in adouble-blind crossover study. Measures included a laboratory test of AdaptiveTracking (AT), and a simulated drive involved a 40 Km motorway route in anadvanced motion-based simulator. Self-report scales of sleepiness revealed asignificant difference between placebo and energy drink. Though both drinksprovided an alerting effect, both the level and duration of the effect observedafter consumption of the energy drink was greater. Performance on the AT taskwas significantly improved. This improvement in hand-eye coordination wasreflected in better lane-keeping performance in the simulated driving task.There was also a consistent tendency when the drivers drank placebo to driveslightly faster in traffic than when drinking the energy drink. Thesepreliminary findings, which demonstrate that consumption of even a relativelysmall volume (250ml) of an energy drink can have an effect on sleepiness, lanekeeping and speed choice in simulated traffic, could have implications forfuture highway safety

    Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1

    Get PDF
    In the event of an influenza pandemic, the majority of people infected will be nursed at home. It is therefore important to determine simple methods for limiting the spread of the virus within the home. The purpose of this work was to test a representative range of common household cleaning agents for their effectiveness at killing or reducing the viability of influenza A virus

    Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation

    Get PDF
    The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon- induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation

    Hadron Mass Predictions of the Valence Approximation to Lattice QCD

    Full text link
    We evaluate the infinite volume, continuum limits of eight hadron mass ratios predicted by lattice QCD with Wilson quarks in the valence (quenched) approximation. Each predicted ratio differs from the corresponding observed value by less than 6\%.Comment: 13 pages of Latex + 2 PostScript files attached, IBM/HET 92-

    The equation of state for two flavor QCD at N_t=6

    Full text link
    We calculate the two flavor equation of state for QCD on lattices with lattice spacing a=(6T)^{-1} and find that cutoff effects are substantially reduced compared to an earlier study using a=(4T)^{-1}. However, it is likely that significant cutoff effects remain. We fit the lattice data to expected forms of the free energy density for a second order phase transition at zero-quark-mass, which allows us to extrapolate the equation of state to m_q=0 and to extract the speed of sound. We find that the equation of state depends weakly on the quark mass for small quark mass.Comment: 24 pages, latex, 11 postscipt figure

    Force distributions in 3D granular assemblies: Effects of packing order and inter-particle friction

    Full text link
    We present a systematic investigation of the distribution of normal forces at the boundaries of static packings of spheres. A new method for the efficient construction of large hexagonal-close-packed crystals is introduced and used to study the effect of spatial ordering on the distribution of forces. Under uniaxial compression we find that the form for the probability distribution of normal forces between particles does not depend strongly on crystallinity or inter-particle friction. In all cases the distribution decays exponentially at large forces and shows a plateau or possibly a small peak near the average force but does not tend to zero at small forces.Comment: 9 pages including 8 figure

    Radiative Decays of Excited Vector Mesons

    Get PDF
    Radiative decays of the 13S11^3S_1 radial and 13D11^3D_1 orbital excitations of the ρ\rho, ω\omega and ϕ\phi are calculated in the quark model, using wave functions obtained variationally from the Hamiltonian with standard quark-model parameters. The larger radiative widths should be measurable at new high-intensity facilities being proposed, and in some cases may be measurable in data from existing experiments. The radiative decays are a strong discriminator between the 13S11^3S_1 and 13D11^3D_1 excitations, and can also be used to provide unique information about the decay products.Comment: 23 pages, 6 figure
    corecore