1,739 research outputs found

    Note on the Relativistic Thermodynamics of Moving Bodies

    Full text link
    We employ a novel thermodynamical argument to show that, at the macroscopic level,there is no intrinsic law of temperature transformation under Lorentz boosts. This result extends the corresponding microstatistical one of earlier works to the purely macroscopic regime and signifies that the concept of temperature as an objective entity is restricted to the description of bodies in their rest frames. The argument on which this result is based is centred on the thermal transactions between a body that moves with uniform velocity relative to a certain inertial frame and a thermometer, designed to measure its temperature, that is held at rest in that frame.Comment: To be published in J. Phys. A. A few minor corrections have been made to the earlier version of this articl

    Klee sets and Chebyshev centers for the right Bregman distance

    Get PDF
    We systematically investigate the farthest distance function, farthest points, Klee sets, and Chebyshev centers, with respect to Bregman distances induced by Legendre functions. These objects are of considerable interest in Information Geometry and Machine Learning; when the Legendre function is specialized to the energy, one obtains classical notions from Approximation Theory and Convex Analysis. The contribution of this paper is twofold. First, we provide an affirmative answer to a recently-posed question on whether or not every Klee set with respect to the right Bregman distance is a singleton. Second, we prove uniqueness of the Chebyshev center and we present a characterization that relates to previous works by Garkavi, by Klee, and by Nielsen and Nock.Comment: 23 pages, 2 figures, 14 image

    How far does the analogy between causal horizon-induced thermalization with the standard heat bath situation go?

    Full text link
    After a short presentation of KMS states and modular theory as the unifying description of thermalizing systems we propose the absence of transverse vacuum fluctuations in the holographic projections as the mechanism for an area behavior (the transverse area) of localization entropy as opposed to the volume dependence of ordinary heat bath entropy. Thermalization through causal localization is not a property of QM, but results from the omnipresent vacuum polarization in QFT and does not require a Gibbs type ensemble avaraging (coupling to a heat bath).Comment: 10 pages, based on talk given at the 2002 Londrina Winter Schoo

    Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Get PDF
    Modular theory of operator algebras and the associated KMS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of lightfront holography reveals that the vacuum polarization on wedge horizons is compressed into the lightray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Bekenstein-) behavior of entropy-like measures which reveal the loss of purity of the vacuum due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior.Comment: 15 page Latex, dedicated to A. A. Belavin on the occasion of his 60th birthda

    Growth, processing, and optical properties of epitaxial Er_2O_3 on silicon

    Get PDF
    Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er^(3+) density 100Ă— greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er_2O_3 epitaxially grown on silicon. A peak Er^(3+) resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm

    Crystallization of recombinant Bacteroides fragilis glutamine synthetase (GlnN) isolated using a novel and rapid purification protocol

    Get PDF
    Glutamine synthetase enzymes (GSs) are large oligomeric enzymes that play a critical role in nitrogen metabolism in all forms of life. To date, no crystal structures exist for the family of large (1 MDa) type III GS enzymes, which only share 9% sequence identity with the well characterized GSI and GSII enzymes. Here we present a novel protocol for the isolation of untagged Bacteroides fragilis GlnN expressed in an auxotrophic Escherichia coli strain. The rapid and scalable two-step protocol utilized differential precipitation by divalent cations followed by affinity chromatography to produce suitable quantities of homogenous material for structural characterization. Subsequent optimizations to the sample stability and solubility led to the discovery of conditions for the production of the first diffraction quality crystals of a type III GS enzyme

    Distillability and positivity of partial transposes in general quantum field systems

    Full text link
    Criteria for distillability, and the property of having a positive partial transpose, are introduced for states of general bipartite quantum systems. The framework is sufficiently general to include systems with an infinite number of degrees of freedom, including quantum fields. We show that a large number of states in relativistic quantum field theory, including the vacuum state and thermal equilibrium states, are distillable over subsystems separated by arbitrary spacelike distances. These results apply to any quantum field model. It will also be shown that these results can be generalized to quantum fields in curved spacetime, leading to the conclusion that there is a large number of quantum field states which are distillable over subsystems separated by an event horizon.Comment: 25 pages, 2 figures. v2: Typos removed, references and comments added. v3: Expanded introduction and reference list. To appear in Rev. Math. Phy

    Program in Comparative Study of Social Transformations

    Full text link
    Also CSST Working Paper #1.http://deepblue.lib.umich.edu/bitstream/2027.42/51112/1/344.pd

    Quantum macrostatistical picture of nonequilibrium steady states

    Full text link
    We employ a quantum macrostatistical treatment of irreversible processes to prove that, in nonequilibrium steady states, (a) the hydrodynamical observables execute a generalised Onsager-Machlup process and (b) the spatial correlations of these observables are generically of long range. The key assumptions behind these results are a nonequilibrium version of Onsager's regression hypothesis, together with certain hypotheses of chaoticity and local equilibrium for hydrodynamical fluctuations.Comment: TeX, 13 page

    Using NDF and ADF to balance diets (1990)

    Get PDF
    In University of Missouri Agricultural guides G3150 and G3160 we explained how detergent solutions are used to measure forage fiber. The guides show how neutral detergent solution can be used to measure neutral detergent fiber (NDF). NDF represents the total plant fiber or cell wall including hemicellulose, cellulose and lignin. These guides also show how acid detergent solution can be used to measure acid detergent fiber (ADF), which contains cellulose and lignin. Both ADF and NDF data help to more accurately estimate feed intake, energy values and animal performanceNew7/90f7M
    • …
    corecore