35 research outputs found
Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane
Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels
The Next Generation of High-Speed Dynamic Stability Wind Tunnel Testing (Invited)
Throughout industry, accurate measurement and modeling of dynamic derivative data at high-speed conditions has been an ongoing challenge. The expansion of flight envelopes and non-conventional vehicle design has greatly increased the demand for accurate prediction and modeling of vehicle dynamic behavior. With these issues in mind, NASA Langley Research Center (LaRC) embarked on the development and shakedown of a high-speed dynamic stability test technique that addresses the longstanding problem of accurately measuring dynamic derivatives outside the low-speed regime. The new test technique was built upon legacy technology, replacing an antiquated forced oscillation system, and greatly expanding the capabilities beyond classic forced oscillation testing at both low and high speeds. The modern system is capable of providing a snapshot of dynamic behavior over a periodic cycle for varying frequencies, not just a damping derivative term at a single frequency
Wind tunnel results of the high-speed NLF(1)-0213 airfoil
Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model
History, Commemoration, and Belief: Abraham Lincoln in American Memory, 1945-2001
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91765/1/Schuman-History_Commemoration_Belief.pd
Registered Ship Notes
https://digitalmaine.com/blue_hill_documents/1179/thumbnail.jp
Autosomal dominant STAT6 Gain of function causes severe atopy associated with lymphoma
The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis