969 research outputs found

    The Half-lives of 132^{132}La and 135^{135}La

    Get PDF
    The half-lives of 135^{135}La and 132^{132}La were determined via gamma spectroscopy and high-precision ionization chamber measurements. The results are 18.930(6) h for 135^{135}La and 4.59(4) h for 132^{132}La compared to the previously compiled values of 19.5(2) h and 4.8(2) h, respectively. The new results represent an improvement in the precision and accuracy of both values. These lanthanum isotopes comprise a medically interesting system with positron emitter 132^{132}La and Auger electron emitter 135^{135}La forming a matched pair for internal diagnostics and therapeutics. The precise half-lives are necessary for proper evaluation of their value in medicine and for a more representative tabulation of nuclear data.Comment: 11 pages, 3 figure

    Measurement of the Shape Factor for the Beta Decay of 14^{14}O

    Full text link
    We report results from an experiment designed to test the conserved vector current (CVC) hypothesis by measuring the shape of the β\beta-decay spectrum for the allowed 0+→1+0^+\rightarrow 1^+ ground state decay of 14^{14}O. Measurements of the spectrum intensity were obtained with a superconducting beta spectrometer and will be reported for positron kinetic energies ranging from 1.9 to 4.0 MeV. After dividing out phase space, Coulomb, and other correction factors, the resulting shape function has a negative slope of several per cent per MeV. We define a parameter a′a', which is essentially a measure of the average slope of the shape function over the energy range of the measurements, and determine its value to be a′=−0.0290±0.0008a' = -0.0290 \pm 0.0008 (stat.) ±0.0006\pm 0.0006 (syst.). The measured slope parameter is in good agreement with predictions from shell model calculations that respect CVC

    Nonequilibrium functional RG with frequency dependent vertex function: A study of the single impurity Anderson model

    Full text link
    We investigate nonequilibrium properties of the single impurity Anderson model by means of the functional renormalization group (fRG) within Keldysh formalism. We present how the level broadening Gamma/2 can be used as flow parameter for the fRG. This choice preserves important aspects of the Fermi liquid behaviour that the model exhibits in case of particle-hole symmetry. An approximation scheme for the Keldysh fRG is developed which accounts for the frequency dependence of the two-particle vertex in a way similar but not equivalent to a recently published approximation to the equilibrium Matsubara fRG. Our method turns out to be a flexible tool for the study of weak to intermediate on-site interactions U <= 3 Gamma. In equilibrium we find excellent agreement with NRG results for the linear conductance at finite gate voltage, magnetic field, and temperature. In nonequilibrium, our results for the current agree well with TD-DMRG. For the nonlinear conductance as function of the bias voltage, we propose reliable results at finite magnetic field and finite temperature. Furthermore, we demonstrate the exponentially small scale of the Kondo temperature to appear in the second order derivative of the self-energy. We show that the approximation is, however, not able to reproduce the scaling of the effective mass at large interactions.Comment: [v2] - minor changes throughout the text; added new Fig. 3; corrected pert.-theory data in Figs. 10, 11; published versio

    Trace and antitrace maps for aperiodic sequences, their extensions and applications

    Full text link
    We study aperiodic systems based on substitution rules by means of a transfer-matrix approach. In addition to the well-known trace map, we investigate the so-called `antitrace' map, which is the corresponding map for the difference of the off-diagonal elements of the 2x2 transfer matrix. The antitrace maps are obtained for various binary, ternary and quaternary aperiodic sequences, such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro sequences, and certain generalizations. For arbitrary substitution rules, we show that not only trace maps, but also antitrace maps exist. The dimension of the our antitrace map is r(r+1)/2, where r denotes the number of basic letters in the aperiodic sequence. Analogous maps for specific matrix elements of the transfer matrix can also be constructed, but the maps for the off-diagonal elements and for the difference of the diagonal elements coincide with the antitrace map. Thus, from the trace and antitrace map, we can determine any physical quantity related to the global transfer matrix of the system. As examples, we employ these dynamical maps to compute the transmission coefficients for optical multilayers, harmonic chains, and electronic systems.Comment: 13 pages, REVTeX, now also includes applications to electronic systems, some references adde

    Broadside radar echoes from ionized trails

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77210/1/AIAA-2347-553.pd
    • …
    corecore