314 research outputs found
Magnetic-Field Induced Quantum Critical Point in YbRhSi
We report low-temperature calorimetric, magnetic and resistivity measurements
on the antiferromagnetic (AF) heavy-fermion metal YbRhSi ( 70
mK) as a function of magnetic field . While for fields exceeding the
critical value at which the low temperature resistivity
shows an dependence, a divergence of upon
reducing to suggests singular scattering at the whole Fermi
surface and a divergence of the heavy quasiparticle mass. The observations are
interpreted in terms of a new type of quantum critical point separating a
weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let
Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(pentafluorophenyl acrylate)
Polysulfobetaines, polymers carrying highly polar zwitterionic side chains, present a promising research field by virtue of their antifouling properties, hemocompatibility, and stimulus-responsive behavior. However, limited synthetic approaches exist to produce sulfobetaine copolymers comprising hydrophobic components. Postpolymerization modification of an activated ester precursor, poly(pentafluorophenyl acrylate), employing a zwitterionic amine, 3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate, ADPS, is presented as a novel, one-step synthetic concept toward sulfobetaine (co)polymers. Modifications were performed in homogeneous solution using propylene carbonate as solvent with mixtures of ADPS and pentylamine, benzylamine, and dodecylamine producing a series of well-defined statistical acrylamido sulfobetaine copolymers containing hydrophobic pentyl, benzyl, or dodecylacrylamide comonomers with well-controllable molar composition as evidenced by NMR and FT-IR spectroscopy and size exclusion chromatography.This synthetic strategy was exploited to investigate, for the first time, the influence of hydrophobic modification on the upper critical solution temperature (UCST) of sulfobetaine copolymers in aqueous solution. Surprisingly, incorporation of pentyl groups was found to increase solubility over a wide composition range, whereas benzyl groups decreased solubility—an effect attributed to different entropic and enthalpic contributions of both functional groups. While UCST transitions of polysulfobetaines are typically limited to higher molar mass samples, incorporation of 0–65 mol % of benzyl groups into copolymers with molar masses of 25.5–34.5 kg/mol enabled sharp, reversible transitions from 6 to 82 °C in solutions containing up to 76 mM NaCl, as observed by optical transmittance and dynamic light scattering. Both synthesis and systematic UCST increase of sulfobetaine copolymers presented here are expected to expand the scope and applicability of these smart materials
Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives
[EN] Digital transformation provide supply chains (SCs) with extensive accurate data that should be combined with analytical techniques to improve their management. Among these techniques Artificial Intelligence (AI) has proved their suitability, memory and ability to manage uncertain and constantly changing information. Despite the fact that a number of AI literature reviews exist, no comprehensive review of reviews for the SC operations planning has yet been conducted. This paper aims to provide a comprehensive review of AI literature reviews in a structured manner to gain insights into their evolution in incorporating new ICTs and collaboration. Results show that hybrization man-machine and collaboration and ethical aspects are understudied.This research has been funded by the project entitled NIOTOME (Ref. RTI2018-102020-B-I00) (MCI/AEI/FEDER, UE). The first author was supported by the Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte) under Grant ACIF/2019/021.Rodríguez-Sánchez, MDLÁ.; Alemany Díaz, MDM.; Boza, A.; Cuenca, L.; Ortiz Bas, Á. (2020). Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives. IFIP Advances in Information and Communication Technology. 598:365-378. https://doi.org/10.1007/978-3-030-62412-5_30S365378598Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48(2019), 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 27(4), 12–14 (2006)Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 2. Heuristech: William Kaufmann, Pitman (1982)High-Level Expert Group on Artificial Intelligence, European Commission. A definition of AI: main capabilities and disciplines (2019)Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability (Switzerland) 12(2) (2020). https://doi.org/10.3390/su12020492Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43(6), 1928–1973 (2019). https://doi.org/10.1002/er.4333Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision-making in the era of big data. Evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)Varshney, S., Jigyasu, R., Sharma, A., Mathew, L.: Review of various artificial intelligence techniques and its applications. IOP Conf. Ser. Mater. Sci. Eng. 594(1) (2019)Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43, 1928–1973 (2019)Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020Metaxiotis, K.S., Askounis, D., Psarras, J.: Expert Systems In Production Planning And Scheduling: A State-Of-The-Art Survey. J. Intell. Manuf. 13(4), 253–260 (2002). https://doi.org/10.1023/A:1016064126976Power, Y., Bahri, P.A.: Integration techniques in intelligent operational management: a review. Knowl. Based Syst. 18(2–3), 89–97 (2005). https://doi.org/10.1016/j.knosys.2004.04.009Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006). https://doi.org/10.1016/j.aei.2006.05.004Kobbacy, K.A.H., Vadera, S., Rasmy, M.H.: AI and OR in management of operations: history and trends. J. Oper. Res. Soc. 58(1), 10–28 (2007). https://doi.org/10.1057/palgrave.jors.2602132Zhang, W.J., Xie, S.Q.: Agent technology for collaborative process planning: a review. Int. J. Adv. Manuf. Technol. 32(3), 315–325 (2007). https://doi.org/10.1007/s00170-005-0345-xIbáñez, O., Cordón, O., Damas, S., Magdalena, L.: A review on the application of hybrid artificial intelligence systems to optimization problems in operations management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 360–367. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_43Kobbacy, K.A.H., Vadera, S.: A survey of AI in operations management from 2005 to 2009. J. Manuf. Technol. Manag. 22(6), 706–733 (2011). https://doi.org/10.1108/17410381111149602Guo, Z.X., Wong, W.K., Leung, S.Y.S., Li, M.: Applications of artificial intelligence in the apparel industry: a review. Text. Res. J. 81(18), 1871–1892 (2011). https://doi.org/10.1177/0040517511411968Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 28(1), 83–97 (2014). https://doi.org/10.1017/S0890060413000516Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72(1–4), 403–418 (2014). https://doi.org/10.1007/s00170-014-5674-1Ngai, E.W.T., Peng, S., Alexander, P., Moon, K.K.L.: Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl. 41(1), 81–91 (2014). https://doi.org/10.1016/j.eswa.2013.07.013Rooh, U.A., Li, A., Ali, M.M.: Fuzzy, neural network and expert systems methodologies and applications - a review. J. Mob. Multimedia 11, 157–176 (2015)Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., Obiwanne, A.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition (2016)Arvitrida, N.I.: A review of agent-based modeling approach in the supply chain collaboration context. IOP Conf. Ser. Mater. Sci. Eng. 337(1) (2018). https://doi.org/10.1088/1757-899x/337/1/012015Zanon, L.G., Carpinetti, L.C.R.: Fuzzy cognitive maps and grey systems theory in the supply chain management context: a literature review and a research proposal. In: IEEE International Conference on Fuzzy Systems, July 2018, pp. 1–8 (2018). https://doi.org/10.1109/fuzz-ieee.2018.8491473Burggräf, P., Wagner, J., Koke, B.: Artificial intelligence in production management: a review of the current state of affairs and research trends in academia. In: 2018 International Conference on Information Management and Processing, ICIMP 2018, January 2018, pp. 82–88 (2018). https://doi.org/10.1109/icimp1.2018.8325846Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybernet. 11(7), 1463–1482 (2019). https://doi.org/10.1007/s13042-019-01050-0Ning, C., You, F.: Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. Comput. Chem. Eng. 125, 434–448 (2019). https://doi.org/10.1016/j.compchemeng.2019.03.034Okwu, M.O., Nwachukwu, A.N.: A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J. Petrol. Explor. Prod. Technol. 9(2), 1555–1568 (2018). https://doi.org/10.1007/s13202-018-0560-2Weber, F.D., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digit. Policy Regul. Gov. 21(3), 264–279 (2019). https://doi.org/10.1108/DPRG-09-2018-0050Giri, C., Jain, S., Zeng, X., Bruniaux, P.: A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access 7, 95376–95396 (2019). https://doi.org/10.1109/ACCESS.2019.2928979Leo Kumar, S.P.: Knowledge-based expert system in manufacturing planning: State-of-the-art review. Int. J. Prod. Res. 57(15–16), 4766–4790 (2019). https://doi.org/10.1080/00207543.2018.1424372Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. (2020). https://doi.org/10.1016/j.rtbm.2020.100453Chai, J., Ngai, E.W.T.: Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst. Appl. 140 (2020). https://doi.org/10.1016/j.eswa.2019.112903Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7Ekramifard, A., Amintoosi, H., Seno, A.H., Dehghantanha, A., Parizi, R.M.: A systematic literature review of integration of blockchain and artificial intelligence. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.) Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38181-3_8Vrbka, J., Rowland, Z.: Using artificial intelligence in company management. In: Ashmarina, S.I., Vochozka, M., Mantulenko, V.V. (eds.) ISCDTE 2019. LNNS, vol. 84, pp. 422–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27015-5_51Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute (2019)Queiroz, M.M., Ivanov, D., Dolgui, A., et al.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03685-
Current and future economic burden of diabetes among working-age adults in Asia: conservative estimates for Singapore from 2010-2050
Abstract Background Diabetes not only imposes a huge health burden but also a large economic burden worldwide. In the working-age population, cost of lost productivity can far exceed diabetes-related medical cost. In this study, we aimed to estimate the current and future indirect and excess direct costs of diagnosed type 2 diabetes among the working-age population in Singapore. Methods A previously-published epidemiological model of diabetes was adapted to forecast prevalence among working-age patients with diagnosed type 2 diabetes in the absence of interventions. The current methodology of the American Diabetes Association was adopted to estimate the costs of diabetes for this population. Diabetes-related excess direct medical costs were obtained from a local cost study while indirect costs were calculated using the human capital approach applied to local labor force statistics. These cost were estimated conservatively from a societal perspective on a per patient basis and projected to the overall Singapore population from 2010 to 2050. Results In 2010, total economic costs per working-age patient were estimated to be US4,432-US7,791 (US12,756) in 2050, with the share of indirect costs rising to 65 %. Simultaneous increases in prevalence imply that the total economic costs of diabetes for the entire working-age population will increase by 2.4 fold from US1,867 million in 2050. Conclusions By current projections, diabetes in Singapore represents a growing economic burden. Among the working-age population, the impact of productivity loss will become increasingly significant. Prevention efforts to reduce overall prevalence should also engage stakeholders outside the health sector who ultimately bear the indirect burden of disease
Observation of a single protein by ultrafast X-ray diffraction
The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory1, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes2. This was first demonstrated on biological samples a decade ago on the giant mimivirus3. Since then a large collaboration4 has been pushing the limit of the smallest sample that can be imaged5,6. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter7 is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale
Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids
- …