70 research outputs found
Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea
Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to
human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses
are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases
in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals
were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in
26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically
distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus
(DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were
nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes
(30
-N-P-M-F-G-L-50
) with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively.
The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages
of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction
of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion,
this study contributes further understandings of the molecular prevalence, genetic characteristics
and diversity, and zoonotic potential of novel paramyxoviruses in shrews
Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.
Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naĂŻve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations
Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma
SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers
Probiotic Lactobacillus Paracasei Expressing a Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv) Enhances Probiotic Activities in Mice Intestine as Revealed by Metagenomic Analyses
Probiotics are well known for their beneficial effects for animals, including humans and livestock. Here, we tested the probiotic activity of Lactobacillus paracasei expressing 3D8 scFv, a nucleic acid-hydrolyzing mini-antibody, in mice intestine. A total of 18 fecal samples derived from three different conditions at two different time points were subjected to high-throughput 16S ribosomal RNA (rRNA) metagenomic analyses. Bioinformatic analyses identified an average of 290 operational taxonomic units. After administration of L. paracasei, populations of the probiotics L. paracasei, Lactobacillus reuteri, and Pediococcus acidilactici increased, whereas the population of harmful bacteria such as Helicobacter species decreased. Furthermore, continuous administration of L. paracasei resulted in L. paracasei emerging as the dominant probiotic after competition with other existing probiotics. Expression of 3D8 scFv protein specifically increased the population of P. acidilactici, which is another probiotic. In summary, our results showed that L. paracasei expressing 3D8 scFv protein enhanced probiotic activity in mice intestine with no observable side effects. Thus, the system developed in this study may be a good tool for the expression of recombinant protein using probiotics
Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario
Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration
Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering
Aluminium–copper composite materials were successfully fabricated using spark plasma sintering with Al and Cu powders as the raw materials. Al–Cu composite powders were fabricated through a ball milling process, and the effect of the Cu content was investigated. Composite materials composed of Al–20Cu, Al–50Cu, and Al–80Cu (vol.%) were sintered by a spark plasma sintering process, which was carried out at 520 °C and 50 MPa for 5 min. The phase analysis of the composite materials by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) indicated that intermetallic compounds (IC) such as CuAl2 and Cu9Al4 were formed through reactions between Cu and Al during the spark plasma sintering process. The mechanical properties of the composites were analysed using a Vickers hardness tester. The Al–50Cu composite had a hardness of approximately 151 HV, which is higher than that of the other composites. The thermal conductivity of the composite materials was measured by laser flash analysis, and the highest value was obtained for the Al–80Cu composite material. This suggests that the Cu content affects physical properties of the Al–Cu composite material as well as the amount of intermetallic compounds formed in the composite material
Effects of Magnetizing Yoke Design on the Magnetic Properties of Nd2Fe14B Permanent Magnet for Electric Vehicle Motor Applications
When the uniformity of the magnetization yoke is low, a mismatch occurs between the physical rotation center and the center due to the magnetic force after magnetization. This discrepancy in rotation can cause issues such as vibration and noise during high-speed rotation, which in the long term leads to a decrease in the lifespan of the motor. In addition, in order to minimize the problem of motor lifespan when a vehicle is used for more than 10 years after purchase, the problems caused by magnetization should be solved as far as possible. In this study, magnetization yokes were designed in various ways to optimize the factors that affect the magnetic properties after the magnetization of the Nd2Fe14B permanent magnets used in electric motors. In the case of a 50 µm deviation between the coils wound inside the magnetization yoke, the magnetic property imbalance of the Nd2Fe14B magnets and the motor characteristics are not significantly affected after magnetization. However, when the center of the coil wound inside the yoke is shifted from the center of the yoke, the magnetic field is generated unevenly, which degrades both the magnetic and motor characteristics of the Nd2Fe14B magnet. Therefore, it is very important to control the center of the coil that generates the external magnetic field in the magnetized yoke in order to magnetize the Nd2Fe14B magnet with excellent magnetic properties
Effects of Magnetizing Yoke Design on the Magnetic Properties of Nd<sub>2</sub>Fe<sub>14</sub>B Permanent Magnet for Electric Vehicle Motor Applications
When the uniformity of the magnetization yoke is low, a mismatch occurs between the physical rotation center and the center due to the magnetic force after magnetization. This discrepancy in rotation can cause issues such as vibration and noise during high-speed rotation, which in the long term leads to a decrease in the lifespan of the motor. In addition, in order to minimize the problem of motor lifespan when a vehicle is used for more than 10 years after purchase, the problems caused by magnetization should be solved as far as possible. In this study, magnetization yokes were designed in various ways to optimize the factors that affect the magnetic properties after the magnetization of the Nd2Fe14B permanent magnets used in electric motors. In the case of a 50 µm deviation between the coils wound inside the magnetization yoke, the magnetic property imbalance of the Nd2Fe14B magnets and the motor characteristics are not significantly affected after magnetization. However, when the center of the coil wound inside the yoke is shifted from the center of the yoke, the magnetic field is generated unevenly, which degrades both the magnetic and motor characteristics of the Nd2Fe14B magnet. Therefore, it is very important to control the center of the coil that generates the external magnetic field in the magnetized yoke in order to magnetize the Nd2Fe14B magnet with excellent magnetic properties
- …