149 research outputs found

    Proinflammatory Role of Vascular Endothelial Growth Factor in the Pathogenesis of Rheumatoid Arthritis: Prospects for Therapeutic Intervention

    Get PDF
    Recent experimental and clinical studies have placed new emphasis on the role of angiogenesis in chronic inflammatory disease. Vascular endothelial growth factor (VEGF) and its receptors are the best characterized system in the regulation of rheumatoid arthritis (RA) by angiogenesis. Furthermore, in addition to its angiogenic role, VEGF can act as a direct proinflammatory mediator during the pathogenesis of RA, and protect rheumatoid synoviocytes from apoptosis, which contributes to synovial hyperplasia. Therefore, the developments of synovial inflammation, hyperplasia, and angiogenesis in the joints of RA patients seem to be regulated by a common cue, namely, VEGF. Agents that target VEGF, such as anti-VEGF antibody and aptamer, have yielded promising clinical data in patients with cancer or macular degeneration, and in RA patients, pharmacologic modulations targeting VEGF or its receptor may offer new therapeutic approaches. In this review, the authors integrate current knowledge of VEGF signaling and information on VEGF antagonists gleaned experimentally and place emphasis on the use of synthetic anti-VEGF hexapeptide to prevent VEGF interacting with its receptor

    MicroRNA-143 and-145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis

    Get PDF
    Fibroblast-like synoviocytes (FLSs) constitute a major cell subset of rheumatoid arthritis (RA) synovia. Dysregulation of microRNAs (miRNAs) has been implicated in activation and proliferation of RA-FLSs. However, the functional association of various miRNAs with their targets that are characteristic of the RA-FLS phenotype has not been globally elucidated. In this study, we performed microarray analyses of miRNAs and mRNAs in RA-FLSs and osteoarthritis FLSs (OA-FLSs), simultaneously, to validate how dysregulated miRNAs may be associated with the RA-FLS phenotype. Global miRNA profiling revealed that miR-143 and miR-145 were differentially upregulated in RA-FLSs compared to OA-FLSs. miR-143 and miR-145 were highly expressed in independent RA-FLSs. The miRNA-target prediction and network model of the predicted targets identified insulin-like growth factor binding protein 5 (IGFBP5) and semaphorin 3A (SEMA3A) as potential target genes downregulated by miR-143 and miR-145, respectively. IGFBP5 level was inversely correlated with miR-143 expression, and its deficiency rendered RA-FLSs more sensitive to TNFα stimulation, promoting IL-6 production and NF-κB activity. Moreover, SEMA3A was a direct target of miR-145, as determined by a luciferase reporter assay, antagonizing VEGF165-induced increases in the survival, migration and invasion of RA-FLSs. Taken together, our data suggest that enhanced expression of miR-143 and miR-145 renders RA-FLSs susceptible to TNFα and VEGF165 stimuli by downregulating IGFBP5 and SEMA3A, respectively, and that these miRNAs could be therapeutic targets. © 2017 KSBMB4

    MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unclear etiology. This study was conducted to identify critical factors involved in the synovial hyperplasia in RA pathology. We applied cDNA microarray analysis to profile the gene expressions of RA fibroblast-like synoviocytes (FLSs) from patients with RA. We found that the MLN51 (metastatic lymph node 51) gene, identified in breast cancer, is remarkably upregulated in the hyperactive RA FLSs. However, growth-retarded RA FLSs passaged in vitro expressed small quantities of MLN51. MLN51 expression was significantly enhanced in the FLSs when the growth-retarded FLSs were treated with granulocyte – macrophage colony-stimulating factor (GM-CSF) or synovial fluid (SF). Anti-GM-CSF neutralizing antibody blocked the MLN51 expression even though the FLSs were cultured in the presence of SF. In contrast, GM-CSF in SFs existed at a significant level in the patients with RA (n = 6), in comparison with the other inflammatory cytokines, IL-1β and TNF-α. Most RA FLSs at passage 10 or more recovered from their growth retardation when cultured in the presence of SF. The SF-mediated growth recovery was markedly impaired by anti-GM-CSF antibody. Growth-retarded RA FLSs recovered their proliferative capacity after treatment with GM-CSF in a dose-dependent manner. However, MLN51 knock-down by siRNA completely blocked the GM-CSF/SF-mediated proliferation of RA FLSs. Taken together, our results imply that MLN51, induced by GM-CSF, is important in the proliferation of RA FLSs in the pathogenesis of RA

    Two-Year Changes in Diabetic Kidney Disease Phenotype and the Risk of Heart Failure: A Nationwide Population-Based Study in Korea

    Get PDF
    Background Diabetic kidney disease (DKD) is a risk factor for hospitalization for heart failure (HHF). DKD could be classified into four phenotypes by estimated glomerular filtration rate (eGFR, normal vs. low) and proteinuria (PU, negative vs. positive). Also, the phenotype often changes dynamically. This study examined HHF risk according to the DKD phenotype changes across 2-year assessments. Methods The study included 1,343,116 patients with type 2 diabetes mellitus (T2DM) from the Korean National Health Insurance Service database after excluding a very high-risk phenotype (eGFR <30 mL/min/1.73 m2) at baseline, who underwent two cycles of medical checkups between 2009 and 2014. From the baseline and 2-year eGFR and PU results, participants were divided into 10 DKD phenotypic change categories. Results During an average of 6.5 years of follow-up, 7,874 subjects developed HHF. The cumulative incidence of HHF from index date was highest in the eGFRlowPU– phenotype, followed by eGFRnorPU+ and eGFRnorPU–. Changes in DKD phenotype differently affect HHF risk. When the persistent eGFRnorPU– category was the reference, hazard ratios for HHF were 3.10 (95% confidence interval [CI], 2.73 to 3.52) in persistent eGFRnorPU+ and 1.86 (95% CI, 1.73 to 1.99) in persistent eGFRlowPU–. Among altered phenotypes, the category converted to eGFRlowPU+ showed the highest risk. In the normal eGFR category at the second examination, those who converted from PU– to PU+ showed a higher risk of HHF than those who converted from PU+ to PU–. Conclusion Changes in DKD phenotype, particularly with the presence of PU, are more likely to reflect the risk of HHF, compared with DKD phenotype based on a single time point in patients with T2DM

    Variability of Response Time as a Predictor of Methylphenidate Treatment Response in Korean Children with Attention Deficit Hyperactivity Disorder

    Get PDF
    PURPOSE: Methylphenidate (MPH) is an effective medication for the treatment of attention deficit hyperactivity disorder (ADHD). However, about 30% of patients do not respond to or are unable to tolerate MPH. Based on previous findings, we hypothesized that great variability in response time (RT) among Korean children with ADHD on a computerized continuous performance attention test would be related to poor MPH treatment response. MATERIALS AND METHODS: Children (ages 6-18 years) with ADHD were recruited for a prospective 12-week, open-labeled, multicenter study to examine optimal dosage of OROS methylphenidate. Of the 144 subjects selected, 28 dropped out due to adverse events, medication noncompliance, or follow-up loss, and an additional 26 subjects with comorbid disorders were excluded from statistical analyses. We defined 'responders' as subjects who received a score of less than 18 on the attention deficit hyperactivity disorder rating scale (ARS; Korean version, K-ARS) and a score of 1 or 2 on the Clinical Global Impression-Improvement scale (CGI-I). RT variability was assessed with the ADHD diagnostic system (ADS). RESULTS: Fifty-nine (67%) subjects responded to MPH treatment. The non-responders showed greater RT variability at baseline (Mann Whitney U = 577.0, p < 0.01). Baseline RT variability was a significant predictor of MPH response (Nagelkerke R(2) = 0.136, p < 0.01). It predicted 94.9% of responder, 17.2% of non-responder and 69.3% of overall group. CONCLUSION: High RT variability may predict poor response to MPH treatment in children with ADHDope

    Identification of novel urinary biomarkers for assessing disease activity and prognosis of rheumatoid arthritis

    Get PDF
    To optimize treatment for rheumatoid arthritis (RA), it is ideal to monitor the disease activity on a daily basis because RA activity fluctuates over time. Urine can be collected routinely at home by patients. Recently, we identified four urinary biomarker candidates-gelsolin (GSN), orosomucoid (ORM)1, ORM2 and soluble CD14 (sCD14)-in RA patients through transcriptomic and proteomic studies. Here, we investigated the clinical significance of the aforementioned urinary biomarker candidates in a prospective manner. For the first time, we found that urinary ORM1, ORM2 and sCD14 levels, but not GSN, were elevated in RA patients and had a positive correlation with the status of the disease activity. In particular, urine tests for ORM 1, ORM 2 and sCD14 efficiently represented the presence of high RA activity without the need for measuring blood markers. In a parallel study, a more rapid radiographic progression over 3 years was observed in patients with higher ORM2 levels. Combined measurements of urinary ORM2 and serum C-reactive protein synergistically increased the predictability of the radiographic progression of RA (odds ratio: 46.5). Collectively, our data provide evidence that blood-free, urinary biomarkers are promising surrogates for assessing disease activity and prognosis of RA. We anticipate that our urinary biomarkers will provide novel candidates for patient-driven measurements of RA activity at home and can shift the paradigm from blood to urine testing in the assessment of RA activity and prognosis in hospitals.1

    Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1β stimulated fibroblast-like synoviocytes

    Get PDF
    It has been suggested that taurine chloramine (TauCl) plays an important role in the downregulation of proinflammatory mediators. However, little is known about its effect on the expression of matrix metalloproteinases (MMPs). In this study, we investigated the effects of TauCl on synovial expression of MMPs. The effects of TauCl on MMP expression in IL-1β stimulated fibroblast-like synoviocytes (FLSs) were studied using the following techniques. Real-time PCR and semi-quantitative PCR were employed to analyze the mRNA expression of MMPs. ELISA was used to determine protein levels of MMPs. Western blot analyses were performed to analyze the mitogen-activated protein kinase and inhibitor of nuclear factor-κB (IκB) kinase signalling pathways. Finally, electrophoretic mobility shift assay and immunohistochemistry were used to assess localization of transcription factors. IL-1β increased the transcriptional and translational levels of MMP-1 and MMP-13 in rheumatoid arthritis FLSs, whereas the levels of MMP-2 and MMP-9 were unaffected. TauCl at a concentration of 400 to 600 μmol/l greatly inhibited the transcriptional and translational expression of MMP-13, but the expression of MMP-1 was significantly inhibited at 800 μmol/l. At a concentration of 600 μmol/l, TauCl did not significantly inhibit phosphorylation of mitogen-activated protein kinase or IκB degradation in IL-1β stimulated rheumatoid arthritis FLSs. The degradation of IκB was significantly inhibited at a TauCl concentration of 800 μmol/l. The inhibitory effect of TauCl on IκB degradation was confirmed by electrophoretic mobility shift assay and immunochemical staining for localization of nuclear factor-κB. TauCl differentially inhibits the expression of MMP-1 and MMP-13, and inhibits expression of MMP-1 primarily through the inhibition of IκB degradation, whereas it inhibits expression of MMP-13 through signalling pathways other than the IκB pathway

    Comparison of the Efficacy of Glimepiride, Metformin, and Rosiglitazone Monotherapy in Korean Drug-Naïve Type 2 Diabetic Patients: The Practical Evidence of Antidiabetic Monotherapy Study

    Get PDF
    BackgroundAlthough many anti-diabetic drugs have been used to control hyperglycemia for decades, the efficacy of commonly-used oral glucose-lowering agents in Korean type 2 diabetic patients has yet to be clearly demonstrated.MethodsWe evaluated the efficacy of glimepiride, metformin, and rosiglitazone as initial treatment for drug-naïve type 2 diabetes mellitus patients in a 48-week, double-blind, randomized controlled study that included 349 Korean patients. Our primary goal was to determine the change in HbA1c levels from baseline to end point. Our secondary goal was to evaluate changes in fasting plasma glucose (FPG) levels, body weight, frequency of adverse events, and the proportion of participants achieving target HbA1c levels.ResultsHbA1c levels decreased from 7.8% to 6.9% in the glimepiride group (P<0.001), from 7.9% to 7.0% in the metformin group (P<0.001), and from 7.8% to 7.0% (P<0.001) in the rosiglitazone group. Glimepiride and rosiglitazone significantly increased body weight and metformin reduced body weight during the study period. Symptomatic hypoglycemia was more frequent in the glimepiride group and diarrhea was more frequent in the metformin group.ConclusionThe efficacy of glimepiride, metformin, and rosiglitazone as antidiabetic monotherapies in drug-naïve Korean type 2 diabetic patients was similar in the three groups, with no statistical difference. This study is the first randomized controlled trial to evaluate the efficacy of commonly-used oral hypoglycemic agents in Korean type 2 diabetic patients. An additional subgroup analysis is recommended to obtain more detailed information

    Two Cases of Percutaneous Intervention for Coronary Artery Bypass Graft Anastomoses With Paclitaxel-Eluting Balloon Catheters

    Get PDF
    Coronary artery bypass graft (CABG) intervention, particularly anastomosis site intervention, is challenging for interventional cardiologists. A paclitaxel-eluting balloon catheter (SeQuent Please) is a recently-introduced device capable of delivering paclitaxel homogeneously into the targeted vessel wall. We herein report our experience with two cases. In the first case, coronary angiography showed significant stenosis at the site of anastomosis between the saphenous vein graft and the left anterior descending artery (LAD). In the second case, coronary angiography showed significant stenosis at the site of anastomosis between the left internal mammary artery and the LAD. We performed percutaneous intervention of these CABG anastomoses using paclitaxel-eluting balloon catheters, and obtained favorable angiographic and clinical outcomes
    corecore