558 research outputs found
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
Variability of extracorporeal cardiopulmonary resuscitation utilization for refractory adult out-of-hospital cardiac arrest: an international survey study.
Objective: A growing interest in extracorporeal cardiopulmonary resuscitation (ECPR) as a rescue strategy for refractory adult out-of-hospital cardiac arrest (OHCA) currently exists. This study aims to determine current standards of care and practice variation for ECPR patients in the USA and Korea.
Methods: In December 2015, we surveyed centers from the Korean Hypothermia Network (KORHN) Investigators and the US National Post-Arrest Research Consortium (NPARC) on current targeted temperature management and ECPR practices. This project analyzes the subsection of questions addressing ECPR practices. We summarized survey.
Results: Overall, 9 KORHN and 4 NPARC centers reported having ECPR programs and had complete survey data available. Two KORHN centers utilized extracorporeal membrane oxygenation only for postarrest circulatory support in patients with refractory shock and were excluded from further analysis. Centers with available ECPR generally saw a high volume of OHCA patients (10/11 centers care for \u3e75 OHCA a year). Location of, and providers trained for cannulation varied across centers. All centers in both countries (KORHN 7/7, NPARC 4/4) treated comatose ECPR patients with targeted temperature management. All NPARC centers and four of seven KORHN centers reported having a standardized hospital protocol for ECPR. Upper age cutoff for eligibility ranged from 60 to 75 years. No absolute contraindications were unanimous among centers.
Conclusion: A wide variability in practice patterns exist between centers performing ECPR for refractory OHCA in the US and Korea. Standardized protocols and shared research databases might inform best practices, improve outcomes, and provide a foundation for prospective studies
Bridging ultrahigh-Q devices and photonic circuits
Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems
Morphology Transformation of Foldamer Assemblies Triggered by Single Oxygen Atom on Critical Residue Switch
The synthesis of morphologically well-defined peptidic materials via self-assembly is challenging but demanding for biocompatible functional materials. Moreover, switching morphology from a given shape to other predictable forms by molecular modification of the identical building block is an even more complicated subject because the self-assembly of flexible peptides is prone to diverge upon subtle structural change. To accomplish controllable morphology transformation, systematic self-assembly studies are performed using congener short β-peptide foldamers to find a minimal structural change that alters the self-assembled morphology. Introduction of oxygen-containing β-amino acid (ATFC) for subtle electronic perturbation on hydrophobic foldamer induces a previously inaccessible solid-state conformational split to generate the most susceptible modification site for morphology transformation of the foldamer assemblies. The site-dependent morphological switching power of ATFC is further demonstrated by dual substitution experiments and proven by crystallographic analyses. Stepwise morphology transformation is shown by modifying an identical foldamer scaffold. This study will guide in designing peptidic molecules from scratch to create complex and biofunctional assemblies with nonspherical shapes
Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar???free conditions
Background: Formate converted from CO2 reduction has great potential as a sustainable feedstock for biological production of biofuels and biochemicals. Nevertheless, utilization of formate for growth and chemical production by microbial species is limited due to its toxicity or the lack of a metabolic pathway. Here, we constructed a formate assimilation pathway in Escherichia coli and applied adaptive laboratory evolution to improve formate utilization as a carbon source in sugar-free conditions.
Results: The genes related to the tetrahydrofolate and serine cycles from Methylobacterium extorquens AM1 were overexpressed for formate assimilation, which was proved by the 13C-labeling experiments. The amino acids detected by GC/MS showed significant carbon labeling due to biomass production from formate. Then, 150 serial subcultures were performed to screen for evolved strains with improved ability to utilize formate. The genomes of evolved mutants were sequenced and the mutations were associated with formate dehydrogenation, folate metabolism, and biofilm formation. Last, 90 mg/L of ethanol production from formate was achieved using fed-batch cultivation without addition of sugars.
Conclusion: This work demonstrates the effectiveness of the introduction of a formate assimilation pathway, combined with adaptive laboratory evolution, to achieve the utilization of formate as a carbon source. This study suggests that the constructed E. coli could serve as a strain to exploit formate and captured CO2
Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-β signaling
<p>Abstract</p> <p>Background</p> <p>Germline mutations in the <it>FLCN </it>gene are responsible for the development of fibrofolliculomas, lung cysts and renal neoplasia in Birt-Hogg-Dube' (BHD) syndrome. The encoded protein folliculin (FLCN) is conserved across species but contains no classic motifs or domains and its function remains unknown. Somatic mutations or loss of heterozygosity in the remaining wild type copy of the <it>FLCN </it>gene have been found in renal tumors from BHD patients suggesting that <it>FLCN </it>is a classic tumor suppressor gene.</p> <p>Results</p> <p>To examine the tumor suppressor function of <it>FLCN</it>, wild-type or mutant <it>FLCN </it>(H255R) was stably expressed in a <it>FLCN-null </it>renal tumor cell line, UOK257, derived from a BHD patient. When these cells were injected into nude mice, tumor development was inversely dependent upon the level of wild-type <it>FLCN </it>expression. We identified genes that were differentially expressed in the cell lines with or without wild-type <it>FLCN</it>, many of which are involved in TGF-β signaling, including <it>TGF-β2 </it>(<it>TGFB2</it>)<it>, inhibin β A chain </it>(<it>INHBA</it>)<it>, thrombospondin 1 </it>(<it>THBS1</it>), <it>gremlin </it>(<it>GREM1</it>), and <it>SMAD3</it>. In support of the <it>in vitro </it>data, <it>TGFB2</it>, <it>INHBA</it>, <it>THBS1 </it>and <it>SMAD3 </it>expression levels were significantly lower in BHD-associated renal tumors compared with normal kidney tissue. Although receptor mediated SMAD phosphorylation was not affected, basal and maximal TGF-β-induced levels of <it>TGFB2</it>, <it>INHBA </it>and <it>SMAD7 </it>were dramatically reduced in <it>FLCN-null </it>cells compared with <it>FLCN</it>-restored cells. Secreted TGF-β2 and activin A (homo-dimer of INHBA) protein levels were also lower in <it>FLCN-null </it>cells compared with <it>FLCN</it>-restored cells. Consistent with a growth suppressive function, activin A (but not TGF-β2) completely suppressed anchorage-independent growth of <it>FLCN-null </it>UOK257 cells.</p> <p>Conclusions</p> <p>Our data demonstrate a role for <it>FLCN </it>in the regulation of key molecules in TGF-β signaling and confirm deregulation of their expression in BHD-associated renal tumors. Thus, deregulation of genes involved in TGF-β signaling by <it>FLCN </it>inactivation is likely to be an important step for tumorigenesis in BHD syndrome.</p
Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes
Active reaction sites for 02 reduction in La0.~Sr01MnO3 electrode have been characterized by addressing the origin of
the cathodic polarization effects on this electrode material. Cathodic polarization (up to - 1.2 V vs. Pt reference electrode}
had several effects on O2 reduction kinetics. First, the O2 reduction rate was favorably increased when the perovskite
electrode was cathodically polarized. Second, in situ x-ray photoelectron spectroscopy results indicated that the Mn ions
are electrochemically reduced and concomitantly the oxygen stoichiometry decreases. Reduction of Mn ions was further
demonstrated in the cyclic voltammogram traced under nitrogen atmosphere. Third, hysteresis in cathodic currents was
observed in the cyclic voltammograms of the perovskite/YSZ/Pt system, and the hysteresis phenomena were more prominent
at higher O~ pressure. We interpreted these findings to mean that the internal and/or external surface oxide vacancies
participate in the O2 reduction reaction. However, it has been explained from the Po2-dependent hysteresis phenomena that,
even though those surface sites are active in the O2 reduction~ their activity is less than that of the three-phase boundary
sites since additional diffusional processes are required for the former sites. Consequently, the three-phase boundary sites
are the major reaction sites at lower O2 pressure, which leads to a small hysteresis. However, at higher 02 pressure, the
surface sites also participate in the reaction, resulting in a larger hysteresis.Funding for this work was provided by the R&D Management Center for Energy and Resources (Korea). S. M. Oh gratefully acknowledges the financial support from the Alexander yon Humboldt Foundation
Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy
Abstract
Background
Previous scoring models such as the Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scoring systems do not adequately predict mortality of patients undergoing continuous renal replacement therapy (CRRT) for severe acute kidney injury. Accordingly, the present study applies machine learning algorithms to improve prediction accuracy for this patient subset.
Methods
We randomly divided a total of 1571 adult patients who started CRRT for acute kidney injury into training (70%, n = 1094) and test (30%, n = 477) sets. The primary output consisted of the probability of mortality during admission to the intensive care unit (ICU) or hospital. We compared the area under the receiver operating characteristic curves (AUCs) of several machine learning algorithms with that of the APACHE II, SOFA, and the new abbreviated mortality scoring system for acute kidney injury with CRRT (MOSAIC model) results.
Results
For the ICU mortality, the random forest model showed the highest AUC (0.784 [0.744–0.825]), and the artificial neural network and extreme gradient boost models demonstrated the next best results (0.776 [0.735–0.818]). The AUC of the random forest model was higher than 0.611 (0.583–0.640), 0.677 (0.651–0.703), and 0.722 (0.677–0.767), as achieved by APACHE II, SOFA, and MOSAIC, respectively. The machine learning models also predicted in-hospital mortality better than APACHE II, SOFA, and MOSAIC.
Conclusion
Machine learning algorithms increase the accuracy of mortality prediction for patients undergoing CRRT for acute kidney injury compared with previous scoring models
- …
