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Abstract

Background: Previous scoring models such as the Acute Physiologic Assessment and Chronic Health Evaluation II
(APACHE II) and the Sequential Organ Failure Assessment (SOFA) scoring systems do not adequately predict
mortality of patients undergoing continuous renal replacement therapy (CRRT) for severe acute kidney injury.
Accordingly, the present study applies machine learning algorithms to improve prediction accuracy for this patient
subset.

Methods: We randomly divided a total of 1571 adult patients who started CRRT for acute kidney injury into
training (70%, n = 1094) and test (30%, n = 477) sets. The primary output consisted of the probability of mortality
during admission to the intensive care unit (ICU) or hospital. We compared the area under the receiver operating
characteristic curves (AUCs) of several machine learning algorithms with that of the APACHE II, SOFA, and the new
abbreviated mortality scoring system for acute kidney injury with CRRT (MOSAIC model) results.

Results: For the ICU mortality, the random forest model showed the highest AUC (0.784 [0.744–0.825]), and the
artificial neural network and extreme gradient boost models demonstrated the next best results (0.776 [0.735–
0.818]). The AUC of the random forest model was higher than 0.611 (0.583–0.640), 0.677 (0.651–0.703), and 0.722
(0.677–0.767), as achieved by APACHE II, SOFA, and MOSAIC, respectively. The machine learning models also
predicted in-hospital mortality better than APACHE II, SOFA, and MOSAIC.

Conclusion: Machine learning algorithms increase the accuracy of mortality prediction for patients undergoing
CRRT for acute kidney injury compared with previous scoring models.

Keywords: Acute kidney injury, Continuous renal replacement therapy, Intensive care unit, Machine learning,
Mortality

Introduction
Acute kidney injury (AKI) is an important issue because of
its related morbidities and mortality rates [1, 2]. The preva-
lence of AKI has been increasing by up to 50% in patients
admitted to the intensive care unit (ICU) [3–5]. Continuous
renal replacement therapy (CRRT) is a widely used renal re-
placement modality, particularly when patients have severe
AKI and are unstable, because it can easily control bio-
chemical imbalances caused by AKI [6, 7]. Despite the

benefits of this modality, the mortality rate remains high,
ranging from 30 to 70% [8–10]. Considering the critical
condition of patients who undergo CRRT, the precise pre-
diction of their prognosis is a topic of interest.
Several mortality prediction models for critically ill pa-

tients with AKI have been presented [11, 12]. However,
these prediction models did not focus on patients re-
quiring CRRT for AKI. Conventional scoring systems
such as the Acute Physiologic Assessment and Chronic
Health Evaluation II (APACHE II) and the Sequential
Organ Failure Assessment (SOFA) have shown suitable
performance for predicting the mortality of ICU patients
[13, 14], but the predictive power appeared insufficient
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for CRRT patients [11]. Thus, it is necessary to intro-
duce a new scoring model or strategy that is tailored to
patients receiving CRRT.
Machine learning has been used in various clinical fields

ranging in application from diagnosis to prediction [15–17].
Machine learning also appears to be useful in predicting out-
comes of critically ill patients or patients with AKI [18–21].
However, machine learning algorithms have not been ap-
plied to patients undergoing CRRT for AKI. Conventional
scoring models such as APACHE II and SOFA show limita-
tions, for example, a low prediction accuracy for the CRRT
subset and difficulty of adding new variables to the models.
Our new abbreviated mortality scoring system for AKI with
CRRT (MOSAIC model) has not been validated in other co-
horts despite a high prediction accuracy of mortality for the
CRRT subset [22]. Because of the success of machine learn-
ing in other clinical applications, the study explored whether
machine learning algorithms are also applicable for predict-
ing the mortality of patients initiating CRRT for AKI. The
study compared the performance of several machine learning
models with that of the conventional APACHE II and SOFA
scores, and with the MOSAIC model.

Methods
Data source and study population
The study protocol complies with the Declaration of
Helsinki, as revised in 2013, and was approved by the in-
stitutional review board of the Seoul National University
Hospital (no. H-1903-130-1020). A total of 1610 adult
patients (≥ 18 years old) who started CRRT for AKI were
retrospectively reviewed at Seoul National University
Hospital from June 2010 to December 2016. Patients
who had underlying end-stage renal disease (n = 27) and
those with no information on co-morbidities or labora-
tory data (n = 12) were excluded. Thus, 1571 patients
were analyzed in the present study. The subjects were
randomly divided into a training set (70%, n = 1094) to
develop the models and a test set (30%, n = 477) to test
the performance of each model.

Study variables
Baseline characteristics such as age, sex, application of mech-
anical ventilation, and co-morbidities including diabetes mel-
litus, hypertension, myocardial infarction, chronic heart
failure, stroke, peripheral vascular disease, dementia, chronic
obstructive pulmonary disease, connective tissue disease,
peptic ulcer disease, cancer, ischemic heart disease, chronic
kidney disease, and atrial fibrillation were collected. Vital
signs, such as mean arterial pressure, heart rate, respiratory
rate, and body temperature, were measured at the initiation
of CRRT for each patient. The laboratory data such as white
blood cell count, hemoglobin, blood urea nitrogen, creatin-
ine, albumin, pH, sodium, and potassium were measured at
the time of starting CRRT. APACHE II, SOFA, and

MOSAIC scores were calculated based on the calculation
methods presented in the original studies [13, 14, 22]. The
primary output was the ICU mortality, and the discontinu-
ation of CRRT was censored. Information on in-hospital
mortality was also collected.

Statistical analysis
Statistical analyses were performed using R software
(version 3.6.2; The Comprehensive R Archive Network:
http://cran.r-project.org). Categorical and continuous
variables are expressed as proportions and the means ±
standard deviation, respectively. The chi-square test was
used to compare categorical variables (Fisher’s exact test
if not applicable). The Student’s t test was used to com-
pare continuous variables. Several machine learning al-
gorithms were used, such as κ-nearest neighbor (KNN),
support vector machine (SVM), multivariate adaptive re-
gression splines (MARS), random forest (RF), extreme
gradient boost (XGB), and artificial neural network
(ANN). The KNN modeling was performed using a
hyperparameter selection process (κ) involving leave-
one-out cross-validation to determine the best accuracy
for the training set. The Euclidean distance was used to
train the KNN model. The rectangular, triangular, Epa-
nechnikov, biweight, Gaussian, rank, and optimal kernels
were used in training. We developed the SVM models
using various kernels including linear, polynomial, sig-
moid, and radial basis functions. For each kernel, we
conducted 10-fold cross-validation and selected the best
hyperparameter (cost, gamma, degree, and coefficients).
We selected the kernel corresponding to the highest area
under the receiver operating characteristic curve (AUC)
for the final SVM model. We conducted 10-fold cross-
validation to develop the MARS model on the training
set. The maximum degree of interaction and the MiniS-
pan were set to three, indicating the allowance of three
evenly spaced knots for each predictor. To select the
hyperparameter for the RF model, we used 10-fold
cross-validation on the training set. The hyperparameter
included ntree (number of trees), mtry (number of vari-
ables used in each tree), and nodesize (minimum size of
nodes, which determines depth). We used 10-fold cross-
validation to develop the XGB model and determined
the best hyperparameter consisting of eta (step size
shrinkage used in the update process to prevent overfit-
ting), gamma (minimum loss reduction required to make
a further partition), and the maximum depth of a tree.
We used 10-fold cross-validation to construct the ANN
model and determined the optimal hyperparameter con-
sisting of the size (the number of hidden nodes) and
decay (parameter for weight decay). When developing
the KNN, SVM, and ANN models, we standardized all
of the prediction variables except for the categorical var-
iables for analysis. Herein, categorical variables were

Kang et al. Critical Care           (2020) 24:42 Page 2 of 9

http://cran.r-project.org


processed using one-hot encoding. Once we developed
the models using the training set, we calculated the F1
score, accuracy, and AUCs on the test set to measure
the performance of each model. To calculate the accur-
acy and F1 score of the APACHE II, SOFA, and MO-
SAIC results, we used the best threshold point of the
receiver operating characteristic curve to determine the
probability of mortality. The AUCs of the models were
compared using the DeLong test. The net benefit of the

machine learning model was assessed by using decision
curve analysis [23, 24]. In the decision curve analysis,
APACHE II, SOFA, and MOSAIC scores were converted
to a logistic regression using probability theory. Calibra-
tion, which is the agreement between predicted prob-
abilities and observed frequencies of ICU mortality, was
assessed with calibration belts. All P values were two-
sided, and values less than 0.05 were considered
significant.

Table 1 Baseline characteristics of the training set

Variables Total (n = 1094) No ICU mortality (n = 464) ICU mortality (n = 630) P

Age (years) 62.6 ± 15.4 62.7 ± 15.1 62.5 ± 15.6 0.874

Male (%) 60.7 57.5 63.0 0.067

Mean arterial pressure (mmHg) 81.0 ± 17.3 82.8 ± 16.4 79.7 ± 17.8 0.003

Heart rate (/min) 105.2 ± 25.4 99.6 ± 24.2 109.3 ± 25.5 < 0.001

Respiratory rate (/min) 24.0 ± 8.4 21.9 ± 7.1 25.5 ± 8.9 < 0.001

Body temperature (°C) 36.3 ± 1.6 36.4 ± 1.4 36.3 ± 1.7 0.159

White blood cells (× 103/μL) 14.1 ± 20.1 14.1 ± 11.5 14.1 ± 24.6 0.969

Hemoglobin (g/dL) 9.8 ± 2.2 10.1 ± 2.1 9.6 ± 2.2 < 0.001

Blood urea nitrogen (mg/dL) 50.3 ± 29.9 49.0 ± 29.7 51.3 ± 30.0 0.219

Creatinine (mg/dL) 2.7 ± 1.7 3.0 ± 2.0 2.5 ± 1.4 < 0.001

Albumin (g/dL) 2.8 ± 0.6 2.9 ± 0.6 2.6 ± 0.6 < 0.001

pH 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 < 0.001

Sodium (mEq/L) 138.6 ± 8.1 138.3 ± 7.1 138.8 ± 8.8 0.318

Potassium (mEq/L) 4.3 ± 0.9 4.2 ± 0.8 4.4 ± 1.0 < 0.001

Target clearance (ml/min) 42.7 ± 14.1 41.8 ± 13.5 43.3 ± 14.5 0.072

Diabetes mellitus (%) 30.3 36.6 25.6 < 0.001

Hypertension (%) 27.8 29.7 26.3 0.216

Myocardial infarction (%) 8.5 10.1 7.3 0.097

Chronic heart failure (%) 15.2 17.7 13.3 0.048

Stroke (%) 12.9 15.5 11.0 0.026

Peripheral vascular disease (%) 7.8 9.1 6.8 0.174

Dementia (%) 5.2 6.9 4.0 0.031

Chronic obstructive pulmonary disease (%) 3.9 2.6 4.9 0.050

Connective tissue disease (%) 1.4 1.5 1.3 0.737

Peptic ulcer disease (%) 2.5 2.2 2.7 0.567

Cancer (%) 36.8 34.1 38.9 0.101

Ischemic heart disease (%) 12.1 14.7 10.2 0.024

Chronic kidney disease (%) 29.7 41.4 11.4 < 0.001

Ventilator apply (%) 82.9 75.2 88.6 < 0.001

Atrial fibrillation (%) 12.3 16.4 9.4 0.001

APACHE II score 35.9 ± 10.3 33.7 ± 10.4 37.6 ± 9.9 < 0.001

SOFA score 12.0 ± 3.6 10.7 ± 3.4 13.0 ± 3.4 < 0.001

MOSAIC score 20.8 ± 10.6 16.4 ± 9.2 24.1 ± 10.4 < 0.001

Data were measured at the time of initiating CRRT
Abbreviations: ICU intensive care unit, APACHE Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure Assessment, MOSAIC Mortality
Scoring system for AKI with CRRT
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Results
Baseline characteristics
We randomly assigned 1094 and 477 patients into train-
ing and test sets, respectively. The variables remained
constant between the two sets (Additional file 1: Table
S1). A total of 26.7% of the patients had anuria (i.e., <
100 ml/d). The ICU and in-hospital mortality rates were
similar between the training and test sets. When the pa-
tients in the training set were categorized according to
the ICU mortality, most of the baseline variables differed
between the groups with and without death. The APA-
CHE II, SOFA, and MOSAIC scores were higher for the
deceased patients than for surviving. Table 1 displays the
other variables.

Development of mortality prediction model
A total of 894 (56.9%) patients died in the ICU. The F1,
accuracy, and AUC values resulting from the test set are
shown in Table 2. The AUC values of APACHE II,
SOFA, and MOSAIC for the prediction of ICU mortality
were 0.611 (0.583–0.640), 0.671 (0.651–0.703), and 0.722
(0.677–0.767), respectively. The AUC value of the RF
model was 0.784 (0.744–0.825), which was the highest
among the machine learning models. The XGB and
ANN models achieved the next highest AUC value of
0.776 (0.735–0.818). The APACHE II, SOFA, and MO-
SAIC scores achieved lower accuracies and F1 scores
than the machine learning models. The XGB models
achieved the highest accuracy and F1 score. Among the

Table 2 Mortality prediction models for patients undergoing continuous renal replacement therapy in the test set

Models AUC (95% CI) P value* P value† P value‡ Accuracy F1 score

APACHE II 0.611 (0.583–0.640) 0.607 0.660

SOFA 0.677 (0.651–0.703) 0.629 0.643

MOSAIC 0.722 (0.677–0.767) 0.660 0.658

κ-Nearest neighbor 0.762 (0.719–0.805) < 0.001 < 0.001 0.213 0.673 0.745

Support vector machine 0.771 (0.729–0.813) < 0.001 < 0.001 0.119 0.692 0.752

Multivariate adaptive regression splines 0.753 (0.710–0.796) < 0.001 0.003 0.332 0.673 0.736

Random forest 0.784 (0.744–0.825) < 0.001 < 0.001 0.045 0.690 0.762

Extreme gradient boost 0.776 (0.735–0.818) < 0.001 < 0.001 0.085 0.715 0.763

Artificial neural network 0.776 (0.735–0.818) < 0.001 < 0.001 0.082 0.694 0.749

Abbreviations: AUC area under the curve, CI confidence interval, APACHE Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure
Assessment, MOSAIC Mortality Scoring system for AKI with CRRT
*Compared with the APACHE II model
†Compared with the SOFA model
‡Compared with the MOSAIC model

Fig. 1 Comparisons of intensive care unit mortality prediction models such as random forest, APACHE II, SOFA, and MOSAIC in the test set. a
Receiver operating characteristic curves of random forest, APACHE II, SOFA, and MOSAIC. The bar graph indicates the median value of the AUC in
the model. The error bar indicates the range. b Decision curve analysis of random forest, APACHE II, SOFA, and MOSAIC. *P < 0.05. APACHE,
Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment; MOSAIC, Mortality Scoring system for AKI with CRRT
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machine learning models, the performance did not sig-
nificantly differ, except for the difference between the
RF and MARS models (Additional file 1: Table S2). The
RF model demonstrated superior performance to the
APACHE II, SOFA, and MOSAIC methods (Ps < 0.05)
(Fig. 1a). The better performance of the RF model than
the conventional scoring systems remained consistent,
even if the ICU mortality was considered without cen-
soring the discontinuation of CRRT (Additional file 2:
Figure S1). The net benefit of the RF model ranged from 7
to 95%, which was better than the ranges corresponding to
the APACHE II, SOFA, and MOSAIC scores (Fig. 1b, with-
out 95% confidence intervals [CIs]; Additional file 2: Figure
S2, with 95% CIs). The machine learning models achieved
better performance than the conventional scoring systems
(Table 2). All of the machine learning models achieved
higher F1 scores and accuracy than conventional scoring
systems. The receiver operating characteristic curves of all
of the evaluated models are shown in Additional file 2: Fig-
ure S3.
The calibration belts of the RF model and the conven-

tional scoring systems for ICU mortality prediction are
shown in Fig. 2. The RF model showed better calibration
among patients at a high risk of ICU mortality than did
the APACHE II, SOFA, and MOSAIC scores.

Rank of predictors in the prediction model
The RF model used Gini impurity to determine the vari-
ables used for the split at each node, and the mean de-
crease in Gini of each variable in every tree was
calculated. Accordingly, the pH was the most important
variable in predicting ICU mortality using the RF model,
followed by white blood cells, creatinine, respiratory rate,
and heart rate (Fig. 3). For the XGB model, which had
the highest F1 score, the importance of variables was de-
termined according to the sum of the decrease in error.
The white blood cell count was the most important vari-
able in predicting ICU mortality, followed by pH, cre-
atinine, and respiratory rate (Fig. 4).

In-hospital mortality prediction model
The prediction accuracy of in-hospital mortality was fur-
ther evaluated. A total of 1019 (64.9%) patients died in
the hospital. The AUC values of the conventional scor-
ing systems and the machine learning models in the test
set are shown in Table 3. The AUCs of the APACHE II,
SOFA, and MOSAIC scores were 0.593 (0.563–0.622),
0.664 (0.636–0.691), and 0.690 (0.641–0.740), respect-
ively. The RF model achieved the highest AUC value,
0.768 (0.726–0.810), which was higher than those of
APACHE II, SOFA, and MOSAIC scores (Fig. 5a). The
net benefit of the RF model ranged from 14 to 95%,
which was superior to the conventional scoring systems
over the threshold range (Fig. 5b). All of the machine
learning models demonstrated better performance than
APACHE II and SOFA scores, whereas some of the ma-
chine learning models such as RF and ANN had better
performance than the MOSAIC model (Table 3). The

Fig. 2 Calibration belts of a random forest, b APACHE II, c SOFA, and d MOSAIC for ICU mortality prediction in the test set

Fig. 3 Rank of importance of variables in developing the random
forest model for intensive care unit mortality prediction
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receiver operating characteristic curves of all of the eval-
uated models are shown in Additional file 2: Figure S4.

Discussion
The application of machine learning to medical and clin-
ical conditions forms a major emerging research trend.
The present study explores whether applying machine
learning could improve the prediction of the mortality of
patients who underwent CRRT for AKI. The mortality of
these patients has previously been difficult to estimate.
The models developed using machine learning algorithms
better predicted ICU and in-hospital mortalities than con-
ventional scoring systems such as APACHE II and SOFA,
and MOSAIC.
Several scoring systems using clinical and laboratory

variables have been developed to predict the outcome of
critically ill patients. The APACHE II and SOFA scores
are representative of these methods and have

demonstrated accurate prediction of mortality in this pa-
tient subset [13, 14, 25–28]. However, these approaches
showed poor performance for critically ill patients with
AKI [11, 12]. Two other scoring models have been ap-
plied to critically ill patients with AKI. The HELENICC
score, which focused on patients with septic AKI, used
five variables (norepinephrine utilization, liver failure,
medical condition, and lactate and pre-dialysis creatinine
levels) and demonstrated good performance in predict-
ing 7-day mortality (AUC = 0.82) [12]. Another model,
which focused on ICU-admitted patients with AKI, also
showed good performance for predicting 7-day mortality
(AUC = 0.85) [11]. However, these models did not focus
on patients initiating CRRT for AKI. A few studies have
identified risk factors of mortality in patients receiving
CRRT [29, 30]. Nevertheless, it is necessary to develop a
mortality prediction model because a few clinical vari-
ables may not be sufficient to precisely predict patient
outcome. Recently, our MOSAIC model achieved suit-
able performance with respect to mortality prediction
for patients receiving CRRT (AUC = 0.772), but the ap-
proach requires further validation and the addition of
new variables may be difficult [22]. Machine learning al-
gorithms may solve these problems and will have the
added benefit of increased accuracy with the accumula-
tion of data.
Machine learning algorithms have been applied to pre-

dict ICU mortality [18, 31–33], although these did not
focus on patients undergoing CRRT. In a medical-
neurological Indian ICU, the ANN model and APACHE
II score achieved similar discriminative power in predict-
ing ICU mortality (AUCs were 0.84 and 0.83, respectively)
[31]. Another study developed models for ICU patients
with unplanned extubation and found that the RF model
achieved the best performance [18]. In the present study,
the RF model achieved the highest AUCs for ICU and in-
hospital mortalities although there were no significant

Table 3 In-hospital mortality prediction models in the test set

Models AUC (95% CI) P value* P value† P value‡ Accuracy F1 score

APACHE II 0.593 (0.563–0.622) 0.586 0.654

SOFA 0.664 (0.636–0.691) 0.603 0.645

MOSAIC 0.690 (0.641–0.740) 0.633 0.656

κ-Nearest neighbor 0.721 (0.675–0.767) < 0.001 0.037 0.379 0.673 0.776

Support vector machine 0.755 (0.711–0.799) < 0.001 < 0.001 0.054 0.686 0.782

Multivariate adaptive regression splines 0.756 (0.713–0.799) < 0.001 < 0.001 0.050 0.694 0.781

Random forest 0.768 (0.726–0.810) < 0.001 < 0.001 0.019 0.700 0.757

Extreme gradient boost 0.754 (0.709–0.798) < 0.001 < 0.001 0.062 0.711 0.790

Artificial neural network 0.762 (0.719–0.806) < 0.001 < 0.001 0.032 0.707 0.790

Abbreviations: AUC area under the curve, CI confidence interval, APACHE Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure
Assessment, MOSAIC Mortality Scoring system for AKI with CRRT
*Compared with the APACHE II model
†Compared with the SOFA model
‡Compared with the MOSAIC model

Fig. 4 Rank of importance of variables in developing the extreme
gradient boost model for intensive care unit mortality prediction
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differences between the RF model and other machine
learning models except for the MARS model. The XGB
model achieved the highest F1 score. For patients initiat-
ing CRRT, the RF and XGB models may be suitable algo-
rithms for predicting mortality.
Decision curve analysis identifies the expected benefit

or harm in performing classification at different risk
levels. It is useful for comparing models where the de-
fault strategies predict all-or-none outcomes such as
mortality. This analysis helps to evaluate prognostic
models with advantages over other commonly-used
models or techniques [23, 24]. This analysis indicated
that the RF model improved the net benefit for predict-
ing the ICU mortality and in-hospital mortality com-
pared with APACHE II, SOFA, and MOSAIC scores.
Displaying the threshold ranges above the prediction-all
and -none curves indicates how the machine learning
models will be applicable to clinical practice.
The present study makes several important contribu-

tions such as the use of several machine learning models
and decision curve analysis according to the specific
condition of patients (CRRT). Nevertheless, the present
study has some limitations. Because of a single-center
design, the models may not be directly applicable to
other centers with different treatment plans and patient
characteristics. Nevertheless, this issue does not infringe
on the purpose of the study, which entails applying ma-
chine learning to predict the mortality of patients initiat-
ing CRRT for AKI, rather than developing the final
generalized model for clinical use. Achieving acceptable
performance with a supervised deep-learning algorithm
requires more than 5000 data points [34], but the
present dataset consisted of a modest sample size.

However, the median sample size of the previous 258
studies which used machine learning to analyze ICU
data was 488 [20], which is smaller than our sample size.
The study identified the most important variables with
respect to predicting mortality, but we could not obtain
certain degrees of risk, such as the relative risk, which is
a common limitation of machine learning algorithms.
Concerns could be raised regarding other issues such as
overfitting, absence of external validation, and not using
fixed time points for the mortality endpoint.

Conclusion
The mortality of patients who undergo CRRT for AKI
has thus far been difficult to estimate. The presented
machine learning models predict the mortality of this
patient subset better than conventional scoring systems
such as APACHE II and SOFA, and MOSAIC. The re-
sults indicate that machine learning algorithms are suit-
able for clinical use in predicting the outcome of
patients initiating CRRT for AKI. Future studies will ex-
plore whether machine learning is also applicable to pre-
dicting other outcomes of the CRRT subset.
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1186/s13054-020-2752-7.

Additional file 1: Table S1. Comparison of baseline characteristics
between the training and test sets. Table S2. P values for differences
between machine learning models for ICU mortality prediction in the test
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Additional file 2: Figure S1. Decision curve analysis for predicting ICU
mortality in the test set. a Random forest. b APACHE II. c SOFA score. d
MOSAIC. e Total. Figure S2. Receiver operating characteristic curves for

Fig. 5 Comparisons of in-hospital mortality prediction models such as random forest, APACHE II, SOFA, and MOSAIC in the test set. a Receiver
operating characteristic curves of random forest, APACHE II, SOFA, and MOSAIC. The bar graph indicates the median value of the AUC in the
model. The error bar indicates the range. b Decision curve analysis of random forest, APACHE II, SOFA, and MOSAIC for in-hospital mortality
prediction. *P < 0.05. APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment; MOSAIC, Mortality
Scoring system for AKI with CRRT
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intensive care unit-mortality-prediction models in the test set. Figure S3.
Receiver operating characteristic curves for in-hospital mortality-
prediction models in the test set.
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