46 research outputs found

    Sestrins are evolutionarily conserved mediators of exercise benefits.

    Get PDF
    Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the metabolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance

    Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

    Get PDF
    The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53’s control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis

    A Case of Familial Comedonal Darier's Disease

    Get PDF
    Darier's disease is a genetic disorder of keratinization with autosomal dominant inheritance. Its appearance is usually in the form of greasy, crusted, keratotic yellow-brown papules and plaques found particularly on seborrheic areas of the body. However, there are some clinical variants showing atypical skin lesions. Here we report an unusual case of Darier's disease, which mainly showed prominent comedonal papules over the face

    Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection

    Get PDF
    Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (T-RM-like) cells. IL-7-mFc-primed pulmonary T-RM-like cells contribute to protection upon IAV infection by dual modes. First, T-RM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, T-RM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future. IMPORTANCE The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections.open1175sciescopu

    Immunomodulatory Effects of Eisenia bicyclis on Innate Immune Cells in Acute Exercise-Stress Rat Model

    Get PDF
    Abstract -In this study we investigated effects of supplementation with ethyl acetate extracts of the brown alga Eisenia bicyclis on innate immune cells to evaluate the possibilities as an immunomoulator in exercise stress. Twenty male SD rats were divided into four groups and the treatments were as follows: A, no Eisenia bicyclis extract (EBE) (200 mg/kg) intake and maintained at rest ; B, no EBE intake and undergoing exercise ; C, EBE intake and undergoing exercise ; D, EBE intake and maintained at rest. After 5 weeks of oral supplementation, rats were undergoing intensive swimming exercises for 2 h and sacrificed to assess the effects on peritoneal macrophages, spleen cells and natural killer (NK) cells. We showed increasing effects on nitric oxide-inducible nitric oxide synthase (NO-iNOS) production by macrophages and no effects of NK tumoricidal activity and suppressive effects on spleen cell proliferation in exercise group. However, EBE supplementation suppressed NO-iNOS production by macrophages and increased NK tumoricidal activity and spleen cell proliferative response to mitogen in exercise group. Overall, these results that EBE supplementation has differential effects on innate immune response and could be useful as sports nutrition

    Sestrins are evolutionarily conserved mediators of exercise benefits

    Get PDF
    Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the meta- bolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise ben- efits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance

    Oncoprotein HCCR-1 expression in breast cancer is well correlated with known breast cancer prognostic factors including the HER2 overexpression, p53 mutation, and ER/PR status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncoprotein HCCR-1 functions as a negative regulator of the p53 and contributes breast tumorigenesis. The serum HCCR-1 assay is useful in diagnosing breast cancer and mice transgenic for HCCR developed breast cancers. But it is unknown how <it>HCCR-1 </it>contributes to human breast tumorigenesis.</p> <p>Methods</p> <p>Oncogene HCCR-1 expression levels were determined in normal breast tissues, breast cancer tissues and cancer cell lines. We examined whether HCCR-1 protein expression in breast cancer is related to different biological characteristics, including ER, PR, p53 genotype, and HER2 status in 104 primary breast cancer tissues using immunohistochemical analyses.</p> <p>Results</p> <p>HCCR-1 was upregulated in breast cancer cells and tissues compared with normal breast tissues. In this study, overexpression of HCCR-1 was well correlated with known breast cancer prognostic markers including the presence of steroid receptors (ER and PR), p53 mutation and high HER2 overexpression. HCCR-1 was not detected in the ER-negative, PR-negative, p53 negative and low HER2 breast cancer tissues. These data indicate that the level of HCCR-1 in breast cancer tissues is relatively well correlated with known breast cancer factors, including the HER2 overexpression, p53 mutation, and ER/PR status.</p> <p>Conclusion</p> <p>Determination of HCCR-1 levels as options for HER2 testing is promising although it needs further evaluation.</p

    The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    Get PDF
    BACKGROUND: Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. METHODS: We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. RESULTS: DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. CONCLUSION: Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and therapeutic strategies against human cancers
    corecore