64 research outputs found

    Clinical Impact and Risk Factors of Seizure After Liver Transplantation: A Nested Case-Control Study

    Get PDF
    Seizures are a frequent neurological consequence following liver transplantation (LT), however, research on their clinical impact and risk factors is lacking. Using a nested case-control design, patients diagnosed with seizures (seizure group) within 1-year post-transplantation were matched to controls who had not experienced seizures until the corresponding time points at a 1:5 ratio to perform survival and risk factor analyses. Seizures developed in 61 of 1,243 patients (4.9%) at median of 11 days after LT. Five-year graft survival was significantly lower in the seizure group than in the controls (50.6% vs. 78.2%, respectively, p < 0.001) and seizure was a significant risk factor for graft loss after adjusting for variables (HR 2.04, 95% CI 1.24–3.33). In multivariable logistic regression, body mass index <23 kg/m2, donor age ≥45 years, intraoperative continuous renal replacement therapy and delta sodium level ≥4 mmol/L emerged as independent risk factors for post-LT seizure. Delta sodium level ≥4 mmol/L was associated with seizures, regardless of the severity of preoperative hyponatremia. Identifying and controlling those risk factors are required to prevent post-LT seizures which could result in worse graft outcome

    Assessment of Deceased Donor Kidneys Using a Donor Scoring System

    Get PDF
    ∙The authors have no financial conflicts of interest. Purpose: Marginal grafts should be used more actively in Asian countries where deceased donor transplantation is unpopular. We modified a quantitative donor scoring system proposed by Nyberg and his colleagues and developed a donor scoring system in order to assess the quality of deceased donor grafts and their prognostic value as an initial effort to promote usage of marginal donors. Materials and Methods: We retrospectively evaluated 337 patients. Results: A scoring system was derived from six donor variables [age, 0-25; renal function, 0-4; history of hypertension

    Biodegradable Metallic Glass for Stretchable Transient Electronics

    Get PDF
    Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (approximate to 2.6% in the nano-tensile test) and offers enhanced stretchability (approximate to 115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use

    Intralymphatic immunotherapy with tyrosine-adsorbed allergens: a double-blind, placebo-controlled trial

    Get PDF
    Background Most previous studies used aluminum hydroxide-absorbed allergen extracts in evaluating the potential therapeutic roles of intralymphatic allergen-specific immunotherapy (ILAIT). In this study, we evaluated the therapeutic efficacy and safety of ILAIT with L-tyrosine-adsorbed allergen extracts of Dermatophagoides farinae, D. pteronyssinus, cat, dog, or mixtures thereof, in patients with allergic rhinitis induced by these allergens. Methods In this randomized, double-blind, placebo-controlled trial, study subjects received three intralymphatic injections of L-tyrosine-adsorbed allergen extracts (active group) or saline (placebo group) at 4-week intervals. Results Although ILAIT reduced daily medication use and skin reactivity to HDM and cat allergens at 4 months after treatment, overall symptom score on a visual analog scale (VAS), sinonasal outcome test-20 (SNOT-20), rhinoconjunctivitis quality of life questionnaire (RQLQ), daily symptom score (dSS), daily medication score (dMS), daily symptom medication score (dSMS), nasal reactivity to HDM allergen, and basophil activity to HDM, cat, and dog allergens at 4 months and 1 year after treatment were similar between the treatment and control groups. Intralymphatic injection was more painful than a venous puncture, and pain at the injection site was the most frequent local adverse event (12.8%); dyspnea and wheezing were the most common systemic adverse events (5.3%). Conclusions ILAIT with L-tyrosine-adsorbed allergen extracts does not exhibit profound therapeutic efficacy in allergic rhinitis and can provoke moderate-to-severe systemic reactions and cause pain at the injection site. Trial registration: clinicaltrials.gov: NCT02665754; date of registration: 28 January 2016This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1D1A1A02061943). The funders had no role in the design of the study and collection, analysis, and interpreta‑tion of data and in writing the manuscript. The authors have no other fnancial relationships relevant to this article to disclose

    The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)

    Full text link
    We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure

    Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    Get PDF
    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/1111sciescopu
    corecore