21 research outputs found

    The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells.</p> <p>Methods</p> <p>Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography.</p> <p>Results</p> <p>We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs) were partially blocked by integrin α6β1 antibodies (<it>P </it>< 0.01). Wortmannin, a specific phosphatidylinositol kinase (PI3K) inhibitor that reverses the effect of HAb18G/CD147 on the regulation of intracellular Ca<sup>2+ </sup>mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (<it>P </it>< 0.05). Importantly, no additive effect between Wortmannin and α6β1 antibodies was observed, indicating that α6β1 and PI3K transmit the signal in an upstream-downstream relationship.</p> <p>Conclusion</p> <p>These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.</p

    Charakterisierung und Klonierung des Blut-Hirn-Schranken-Proteins HT7 Ein neues Mitglied der Immunoglobulin-Superfamilie

    No full text
    SIGLEAvailable from TIB Hannover: DW 7152 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Molecular characterization of human and bovine endothelin converting enzyme (ECE-1)

    Get PDF
    A membrane-bound protease activity that specifically converts Big endothelin-1 has been purified from bovine endothelial cells (FBHE). The enzyme was cleaved with trypsin and the peptide sequencing analysis confirmed it to be a zinc chelating metalloprotease containing the typical HEXXH (HELTH) motif. RT-PCR and cDNA screens were employed to isolate the complete cDNAs of the bovine and human enzymes. This human metalloprotease was expressed heterologously in cell culture and oocytes. The catalytic activity of the recombinant enzyme is the same as that determined for the natural enzyme. The data suggest that the characterized enzyme represents the functional human endothelin converting enzyme ECE-1
    corecore