13 research outputs found

    "Antarctic yeasts as a source of L-asparaginase: Characterization of a glutaminase-activity free L-asparaginase from psychrotolerant yeast Leucosporidium scottii L115"

    Get PDF
    "Microorganisms from extreme environments, such as the Antarctic ecosystems, have a great potential to produce enzymes with novel characteristics. Within this context, L-asparaginase (ASNase) obtained from yeast species has been poorly studied. In this study, yeasts isolated from samples collected at Admiralty Bay (King George Island, Antarctica) were tested to produce ASNase. From an initial screening of 40 strains, belonging to 13 different species, Leucosporidium scottii L115 produced an ASNase activity (LsASNase activity: 6.24 U g-1 of dry cell weight) with the lowest glutaminase activity. The LsASNase was purified 227-fold, with a specific activity of 137.01 U mg-1 at 37 ◦C, without glutaminase activity. Moreover, the maximum enzyme activity was observed at pH 7.5 and at a temperature of 55 ◦C. The enzyme is a multimer of 462 kDa, presenting a single band of 53 kDa molecular mass in reduced conditions; after PGNase F treatment, a single band of 45 kDa was observed. The enzymatic kinetic evaluation revealed an allosteric regulation of the enzyme and the kinetic parameters were determined at 37 ◦C, pH 7.0 as substrate affinity constant, K0.5 = 233 μM, kcat = 54.7 s − 1 and Hill coefficient, nH = 1.52, demonstrating positive cooperativity by the enzyme and the substrate. This is the first study to report L. scottii as a source of glutaminase-activity free L-asparaginase, an acute lymphoblastic leukemia drug feature suitable for the treatment of asparagine synthetase negative cancer cells.

    The Production of Ligninolytic Enzymes by Marine-Derived Basidiomycetes and Their Biotechnological Potential in the Biodegradation of Recalcitrant Pollutants and the Treatment of Textile Effluents

    No full text
    Filamentous fungi derived from marine environments are well known as a potential genetic resource for various biotechnological applications. Although terrestrial fungi have been reported to be highly efficient in the remediation of xenobiotic pollutants, fungi isolated from the marine environment may possess biological advantages over terrestrial fungi because of their adaptations to high salinity and pH extremes. The present study describes the production of ligninolytic enzymes under saline and non-saline conditions and the decolorization of Remazol Brilliant Blue R (RBBR) dye by three basidiomycetes recovered from marine sponges (Tinctoporellus sp. CBMAI 1061, Marasmiellus sp. CBMAI 1062, and Peniophora sp. CBMAI 1063). Ligninolytic enzymes were primarily produced by these fungi in a salt-free malt extract and malt extract formulated with artificial seawater (saline condition). CuSO4 and wheat bran were the best inducers of lignin peroxidase and manganese peroxidase activity. RBBR was decolorized up to 100% by the three fungi, and Tinctoporellus sp. CBMAI 1061 was the most efficient. Our results revealed the biotechnological potential of marine-derived basidiomycetes for dye decolorization and the treatment of colored effluent as well as for the degradation of other organopollutants by ligninolytic enzymes in non-saline and saline conditions that resemble the marine environment.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones

    No full text
    The scanning electron microscopy (SEM) analysis showed that whole living hyphal of marine fungi Aspergillus sclerotiorum CBMAI 849 and Penicillium citrinum CBMAI 1186 were immobilized on support matrices of silica gel, silica xerogel and/or chitosan. P. citrinum immobilized on chitosan catalyzed the quantitative reduction of 1-(4-methoxyphenyl)-ethanone (1) to the enantiomer (S)-1-(4-methoxyphenyl)-ethanol (3b), with excellent enantioselectivity (ee > 99%, yield = 95%). Interestingly, ketone 1 was reduced with moderate selectivity and conversion to alcohol 3b (ee = 69%, c 40%) by the free mycelium of P. citrinum. This free mycelium of P. citrinum catalyzed the production of the (R)-alcohol 3a, the antipode of the alcohol produced by the immobilized cells. P. citrinum immobilized on chitosan also catalyzed the bioreduction of 2-chloro-1-phenylethanone (2) to 2-chloro-1-phenylethanol (4a,b), but in this case without optical selectivity. These results showed that biocatalytic reduction of ketones by immobilization hyphal of marine fungi depends on the xenobiotic substrate and the support matrix used. (c) 2012 Elsevier B.V. All rights reserved.10th International Symposium on Biocatalysis and Biotransformations (BIOTRANS)8416016

    Bioconversion of Iodoacetophenones by Marine Fungi

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.144396401Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade de São Paulo (USP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Bioconversion of Iodoacetophenones by Marine Fungi

    No full text
    Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)USP-ReitoriaUSPReitori

    Bioconversion of iodoacetophenones by marine fungi

    No full text
    Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1–3 to corresponding iodophenylethanols 6–8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction–oxidation reactions144396401CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPUSP-Reitori

    The diversity of polyketide synthase genes from sugarcane-derived fungi

    No full text
    The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with beta-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential633565577CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPThe Academy of Science for the Developing World (TWAS

    The Diversity of Polyketide Synthase Genes from Sugarcane-Derived Fungi

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with beta-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.633565577The Academy of Science for the Developing World (TWAS)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp.

    No full text
    Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50A degrees C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Isolation of brazilian marine fungi capable of growing on DDD pesticide

    No full text
    The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 × 10−12 mmol), 10.0 mg (3.12 × 10−2 mmol) and 15.0 mg (4.68 × 10−2 mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days224350CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP307830/2006-32006/54401-2; 2007/58263-
    corecore