779 research outputs found
A Very Special Congruency Problem
The following question appears in Chapter 7 of the Class VII NCERT Mathematics textbook (page 150):
Draw a rough sketch of two triangles such that they have
five pairs of congruent parts but still the triangles are not congruent.
Here, âpartsâ refers to the three sides and three angles of the triangle; âcongruent partsâ means that the corresponding parts of the two triangles are identically equal to each other. The questions that quickly come to mind are: âWhy a rough sketch? Why not the exact figure?â âIs it possible to draw such pairs of triangles exactly?â We will find the answers to these questions in this article and prove some related results
Nanoengineered condenser surfaces for enhancing transport in thermal desalination by air gap membrane distillation
Thermal desalination is a technique that uses heat or thermal energy to desalinate water, unlike reverse osmosis. Membrane distillation (MD) is a type of thermal desalination technology having various configurations. Air gap membrane distillation (AGMD) is one of the more energy efficient MD configurations, being especially advantageous over other configurations at high salinity. However, the large mass transfer resistance of the air gap dramatically reduces the permeate flux, impairing performance. Higher condensation performance can be achieved by using a smaller air gap size, but typical film-wise condensation flow patterns flood the air gap at the optimal gap size (\u3c1 mm). Experiments show that dropwise and jumping-droplet condensation regimes, achieved using hydrophobic and superhydrophobic condensing surfaces respectively, can improve droplet shedding, allowing for thinner gap sizes. A systemlevel numerical model is used to demonstrate that these surfaces could thereby enable improved energy efficiency (2.1Ă increase of gained output ratio) while avoiding flooding at gap sizes as small as 0.2 mm. Superhydrophobic surfaces with directional jumping of droplets, specifically in the direction of gravity, are also tested and compared to droplets that jump normal to the condensing surface. Novel condensing surfaces that include a combination of the superhydrophobic and superhydrophilic patterns create flow regimes having pathways for faster permeate removal. Other condensing surfaces, including SLIPS (slippery liquidinfused porous surfaces) and laser-ablated superhydrophobic patterned surfaces are tested to the check the extent to which they improve the permeate removal rate while exhibiting different condensation regimes that merit further exploration
Nuclear matter effects on production in asymmetric Cu+Au collisions at = 200 GeV
We report on production from asymmetric Cu+Au heavy-ion collisions
at =200 GeV at the Relativistic Heavy Ion Collider at both
forward (Cu-going direction) and backward (Au-going direction) rapidities. The
nuclear modification of yields in CuAu collisions in the Au-going
direction is found to be comparable to that in AuAu collisions when plotted
as a function of the number of participating nucleons. In the Cu-going
direction, production shows a stronger suppression. This difference is
comparable in magnitude and has the same sign as the difference expected from
shadowing effects due to stronger low- gluon suppression in the larger Au
nucleus. The relative suppression is opposite to that expected from hot nuclear
matter dissociation, since a higher energy density is expected in the Au-going
direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys.
Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of higher cumulants of net-charge multiplicity distributions in AuAu collisions at GeV
We report the measurement of cumulants () of the net-charge
distributions measured within pseudorapidity () in AuAu
collisions at GeV with the PHENIX experiment at the
Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. ,
) of the net-charge distributions, which can be related to volume
independent susceptibility ratios, are studied as a function of centrality and
energy. These quantities are important to understand the quantum-chromodynamics
phase diagram and possible existence of a critical end point. The measured
values are very well described by expectation from negative binomial
distributions. We do not observe any nonmonotonic behavior in the ratios of the
cumulants as a function of collision energy. The measured values of and can be directly compared to lattice
quantum-chromodynamics calculations and thus allow extraction of both the
chemical freeze-out temperature and the baryon chemical potential at each
center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. C as a Rapid Communication. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
meson production in Au collisions at GeV
The PHENIX experiment has measured meson production in Au
collisions at GeV using the dimuon and dielectron decay
channels. The meson is measured in the forward (backward) -going
(Au-going) direction, () in the transverse-momentum
() range from 1--7 GeV/, and at midrapidity in the
range below 7 GeV/. The meson invariant yields and
nuclear-modification factors as a function of , rapidity, and centrality
are reported. An enhancement of meson production is observed in the
Au-going direction, while suppression is seen in the -going direction, and
no modification is observed at midrapidity relative to the yield in
collisions scaled by the number of binary collisions. Similar behavior was
previously observed for inclusive charged hadrons and open heavy flavor
indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version
accepted for publication in Phys. Rev. C. Data tables for the points plotted
in the figures are given in the paper itsel
- âŠ