151 research outputs found

    Viral Genomics and Bioinformatics

    Get PDF
    From the recognition by Ivanovski in 1892 that tobacco mosaic disease is caused and transmitted by fine pore filtrates [1], viruses have been isolated, characterized, identified and studied from animals, plants, protists, bacteria and even other viruses [2,3]. As human and global public health pathogens that can be highly contagious and have devastating morbidity and mortality consequences, viruses are the focus of much research. The difficult challenge has been to define and study a miniscule “being” with the appropriate tools. In the past, these tools often provided only low-resolution views. A first approach to studying an unknown virus is to know exactly its identity, and to place it into context of other related and non-related viruses. For human and public health, this is important as the identity may provide a course of action to limit the effects of the pathogen. [...

    CoreGenes: A computational tool for identifying and cataloging "core" genes in a set of small genomes

    Get PDF
    BACKGROUND: Improvements in DNA sequencing technology and methodology have led to the rapid expansion of databases comprising DNA sequence, gene and genome data. Lower operational costs and heightened interest resulting from initial intriguing novel discoveries from genomics are also contributing to the accumulation of these data sets. A major challenge is to analyze and to mine data from these databases, especially whole genomes. There is a need for computational tools that look globally at genomes for data mining. RESULTS: CoreGenes is a global JAVA-based interactive data mining tool that identifies and catalogs a "core" set of genes from two to five small whole genomes simultaneously. CoreGenes performs hierarchical and iterative BLASTP analyses using one genome as a reference and another as a query. Subsequent query genomes are compared against each newly generated "consensus." These iterations lead to a matrix comprising related genes from this set of genomes, e. g., viruses, mitochondria and chloroplasts. Currently the software is limited to small genomes on the order of 330 kilobases or less. CONCLUSION: A computational tool CoreGenes has been developed to analyze small whole genomes globally. BLAST score-related and putatively essential "core" gene data are displayed as a table with links to GenBank for further data on the genes of interest. This web resource is available at http://pumpkins.ib3.gmu.edu:8080/CoreGenes or http://www.bif.atcc.org/CoreGenes

    CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses and small-genome bacteria (~2 megabases and smaller) comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG) is an <it>in silico </it>genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms.</p> <p>Findings</p> <p>CGUG is available at <url>http://binf.gmu.edu/geneorder.html</url> as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an <it>in silico </it>display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with <it>Chlamydophila </it>and <it>Francisella </it>genomes.</p> <p>Conclusion</p> <p>CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins.</p

    CoreGenes3.5: A webserver for the determination of core genes from sets of viral and small bacterial genomes

    Get PDF
    Background: CoreGenes3.5 is a webserver that determines sets of core genes from viral and small bacterial genomes as an automated batch process. Previous versions of CoreGenes have been used to classify bacteriophage genomes and mine data from pathogen genomes. Findings. CoreGenes3.5 accepts as input GenBank accession numbers of genomes and performs iterative BLASTP analyses to output a set of core genes. After completion of the program run, the results can be either displayed in a new window for one pair of reference and query genomes or emailed to the user for multiple pairs of small genomes in tabular format. Conclusions: With the number of genomes sequenced increasing daily and interest in determining phylogenetic relationships, CoreGenes3.5 provides a user-friendly web interface for wet-bench biologists to process multiple small genomes for core gene determinations. CoreGenes3.5 is available at. © 2013 Turner et al.; licensee BioMed Central Ltd

    Genomic and bioinformatics analysis of HAdV-7, a human adenovirus of species B1 that causes acute respiratory disease: implications for vector development in human gene therapy

    Get PDF
    AbstractHuman adenovirus serotype 7 (HAdV-7) is a reemerging pathogen identified in acute respiratory disease (ARD), particularly in epidemics affecting basic military trainee populations of otherwise healthy young adults. The genome has been sequenced and annotated (GenBank accession no. AY594255). Comparative genomics and bioinformatics analyses of the HAdV-7 genome sequence provide insight into its natural history and phylogenetic relationships. A putative origin of HAdV-7 from a chimpanzee host is observed. This has implications within the current biotechnological interest of using chimpanzee adenoviruses as vectors for human gene therapy and DNA vaccine delivery. Rapid genome sequencing and analyses of this species B1 member provide an example of exploiting accurate low-pass DNA sequencing technology in pathogen characterization and epidemic outbreak surveillance through the identification, validation, and application of unique pathogen genome signatures

    GeneOrder3.0: Software for comparing the order of genes in pairs of small bacterial genomes

    Get PDF
    BACKGROUND: An increasing number of whole viral and bacterial genomes are being sequenced and deposited in public databases. In parallel to the mounting interest in whole genomes, the number of whole genome analyses software tools is also increasing. GeneOrder was originally developed to provide an analysis of genes between two genomes, allowing visualization of gene order and synteny comparisons of any small genomes. It was originally developed for comparing virus, mitochondrion and chloroplast genomes. This is now extended to small bacterial genomes of sizes less than 2 Mb. RESULTS: GeneOrder3.0 has been developed and validated successfully on several small bacterial genomes (ca. 580 kb to 1.83 Mb) archived in the NCBI GenBank database. It is an updated web-based "on-the-fly" computational tool allowing gene order and synteny comparisons of any two small bacterial genomes. Analyses of several bacterial genomes show that a large amount of gene and genome re-arrangement occurs, as seen with earlier DNA software tools. This can be displayed at the protein level using GeneOrder3.0. Whole genome alignments of genes are presented in both a table and a dot plot. This allows the detection of evolutionary more distant relationships since protein sequences are more conserved than DNA sequences. CONCLUSIONS: GeneOrder3.0 allows researchers to perform comparative analysis of gene order and synteny in genomes of sizes up to 2 Mb "on-the-fly." Availability: and

    Parental LTRs Are Important in a Construct of a Stable and Efficient Replication-Competent Infectious Molecular Clone of HIV-1 CRF08_BC

    Get PDF
    Circulating recombinant forms (CRFs) of HIV-1 have been identified in southern China in recent years. CRF08_BC is one of the most predominant subtypes circulating in China. In order to study HIV subtype biology and to provide a tool for biotechnological applications, the first full-length replication-competent infectious molecular clone harboring CRF08_BC is reported. The construction of this clone pBRGX indicates that a moderate-copy number vector is required for its amplification in E. coli. In addition, it is shown that the parental CRF08_BC LTRs are important for generating this efficient replication-competent infectious clone. These observations may aid in the construction of infectious clones from other subtypes. Both the pBRGX-derived virus and its parental isolate contain CCR5 tropism. Their full-length genomes were also sequenced, analyzed, compared and deposited in GenBank (JF719819 and JF719818, respectively). The availability of pBRGX as the first replication-competent molecular clone of CRF08_BC provides a useful tool for a wide range of studies of this newly emergent HIV subtype, including the development of HIV vaccine candidates, antiviral drug screening and drug resistance analysis

    Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine Development and for Applications in Vector Development for Gene Delivery

    Get PDF
    Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented

    The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Get PDF
    Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV), HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1–393, 394–1410, 1411–2910) within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics

    Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis

    Get PDF
    With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be na€ıve to these vectors. Additionally, as impor- tant pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including “other than human”, that are pos- sible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of “primate adenovirus” (PrAdV) superseding either HAdV and SAdV is proposed, or alter- natively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identifica- tion as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum
    corecore