6 research outputs found

    Homocysteine and cognition: A systematic review of 111 studies

    Get PDF
    Background Elevated plasma homocysteine ​​(Hcy) levels have been associated with cognitive dysfunction in a wide range of conditions. The aim of this review is to establish which cognitive domains and populations are the most affected. Methods We systematically review the literature and consider all articles that showed any relationship between plasma Hcy levels and scores achieved on cognitive performance tests in both, the general population and patients suffering from central nervous system disorders and other diseases. When effect sizes were available and combinable, several meta-analyses were performed. Results We found 111 pertinent articles. There were 24 cohort studies, 18 randomized trials, 21 case-control studies, and 48 cross-sectional studies. This review reveals a positive trend between cognitive decline and increased plasma Hcy concentrations in general population and in patients with cognitive impairments. Results from the meta-analyses also confirm this trend. Treatment with vitamin supplementation fails to show a reduction in cognitive decline. Discussion Further investigations are warranted to clarify this relationship. Earlier detection of the elevated Hcy levels may be an effective intervention to prevent cognitive impairment and dementia

    Stability of schizophrenia diagnosis in a ten-year longitudinal study on first episode of non-affective psychosis: conclusions from the PAFIP cohort

    Get PDF
    OBJECTIVE: To evaluate the ten-year stability of schizophrenia diagnosis in a cohort of first-episode psychosis (FEP) patients and the factors associated with it. METHODS: Changes in diagnosis of 209 FEP patients were described during ten years of follow-up. Related factors with maintenance or change of schizophrenia diagnosis were evaluated in prospective and retrospective approaches through Binary Logistic Regressions, ROC and survival curves. RESULTS: Out of the 209 patients, 126 were diagnosed of schizophrenia six months after their inclusion in the clinical program. Prospective analyses showed that eight of those 126 schizophrenia patients had changed to a different diagnosis after ten years, and predictors of change were better childhood premorbid adjustment, less severity of clinical global impression at baseline, and diagnosis of comorbid personality disorder during follow-up. Retrospectively, out of the 154 patients with schizophrenia in the ten-year assessment, 36 had a different diagnosis at baseline, and those factors related with a different prior diagnosis than schizophrenia were better socioeconomic status and shorter duration of untreated psychosis (DUP). A survival analysis on the timing of schizophrenia diagnosis showed that male gender and longer DUP were predictors of earlier definite diagnosis. CONCLUSIONS: Diagnostic stability of schizophrenia in our FEP sample is high, especially prospective stability, and the group of patients with diagnostic change corresponded to a milder psychopathological profile before and at the onset of disease. Moreover, we observed a cautious attitude in the diagnosis of schizophrenia in patients with shorter DUP who had schizophrenia diagnosis after ten years

    Using machine learning and structural neuroimaging to detect first episode psychosis: Reconsidering the evidence

    No full text
    Despite the high level of interest in the use of machine learning (ML) and neuroimaging to detect psychosis at the individual level, the reliability of the findings is unclear due to potential methodological issues that may have inflated the existing literature. This study aimed to elucidate the extent to which the application of ML to neuroanatomical data allows detection of first episode psychosis (FEP), while putting in place methodological precautions to avoid overoptimistic results. We tested both traditional ML and an emerging approach known as deep learning (DL) using 3 feature sets of interest: (1) surface-based regional volumes and cortical thickness, (2) voxel-based gray matter volume (GMV) and (3) voxel-based cortical thickness (VBCT). To assess the reliability of the findings, we repeated all analyses in 5 independent datasets, totaling 956 participants (514 FEP and 444 within-site matched controls). The performance was assessed via nested cross-validation (CV) and cross-site CV. Accuracies ranged from 50% to 70% for surfaced-based features; from 50% to 63% for GMV; and from 51% to 68% for VBCT. The best accuracies (70%) were achieved when DL was applied to surface-based features; however, these models generalized poorly to other sites. Findings from this study suggest that, when methodological precautions are adopted to avoid overoptimistic results, detection of individuals in the early stages of psychosis is more challenging than originally thought. In light of this, we argue that the current evidence for the diagnostic value of ML and structural neuroimaging should be reconsidered toward a more cautious interpretation

    Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners

    Get PDF
    descripción no proporcionada por scopusThis research has been conducted using the UK Biobank Resource (Project Number 40323) and has been supported by a Wellcome Trust’s Innovator Award (208519/Z/17/Z) to Andrea Mechelli. The present work was carried out within the scope of the research program Dipartimenti di Eccellenza (art.1, commi 314-337 legge 232/2016), which was supported by a grant from MIUR to the Department of General Psychology, University of Padua. The data from UCLA, LOSS AVERSION, EMOTIONREGULATION, FALSEBELIEFS, MATURATIONAL CHANGES, ASSOCIATIVE LEARNING, HARMAVOIDANCE, PLACEBO, MORAL JUDGEMENT, CYBERBALL, ROUTE LEARNING, SEQUENTIAL INFERENCE VBM, WASHINGTON UNIVERSITY datasets were obtained from the OpenfMRI database. Their accession numbers are ds000030, ds000053, ds000108, ds000109, ds000119, ds000168, ds000202, ds000208, ds000212, ds000214, ds000217, ds000222, and ds000243, respectively. The acquisition of dataset HMRRC was supported by the National Natural Science Foundation of China to Prof. Qiyong Gong (81220108013, 8122010801, 81621003, 81761128023 and 81227002). Part of the data used in this article (NITRC) have been funded in whole or in part with Federal funds from the Department of Health and Human Services, National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, under the following NIH grants: 1R43NS074540, 2R44NS074540, and 1U24EB023398and previously GSA Contract No. GS-00F-0034P, Order Number HHSN268200100090U. This research has been conducted using the UK Biobank Resource. Part of the data used in preparation of this article were obtained from the Alzheimer’s Disease Repository Without Borders (ARWiBo – www.arwibo.it). The overall goal of ARWiBo is to contribute, thorough synergy with neuGRID (https://neugrid2.eu), to global data sharing and analysis in order to develop effective therapies, prevention methods and a cure for Alzheimer’ and other neurodegenerative diseases. Part of the data used in this article was downloaded from the Collaborative Informatics and Neuroimaging Suite Data Exchange tool (COINS; http://coins.mrn.org/dx) and data collection was performed at the Mind Research Network and funded by a Center of Biomedical Research Excellence (COBRE) grant 5P20RR021938/P20GM103472 from the NIH to Dr. Vince Calhoun. Part of the data used for this study were downloaded from the Function BIRN Data Repository (http://fbirnbdr.birncommunity.org:8080/BDR/), supported by grants to the Function BIRN (U24-RR021992) Testbed funded by the National Center for Research Resources at the National Institutes of Health, U.S.A. Part of the data used in the preparation of this work were obtained from the Mind Clinical Imaging Consortium database through the Mind Research Network (www.mrn.org). The MCIC project was supported by the Department of Energy under Award Number DE-FG02-08ER64581. MCIC is the result of efforts of co-investigators from University of Iowa, University of Minnesota, University of New Mexico, Massachusetts General Hospital. CLING/HMS: The CliNG study sample was partially supported by the Deutsche Forschungsgemeinschaft (DFG) via the Clinical Research Group 241 ‘Genotype-phenotype relationships and neurobiology of the longitudinal course of psychosis’, TP2 (PI Gruber; http://www.kfo241.de; grant number GR 1950/5-1). Part of the data used in preparation of this article were obtained from the NU Schizophrenia Data and Software Tool (NUSDAST) database (http://central.xnat.org/REST/projects/NUDataSharing) As such, the investigators within NUSDAST contributed to the design and implementation of NUSDAST and/or provided data but did not participate in analysis or writing of this report. Part of the data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including [list the full names of all of the PPMI funding partners found at www.ppmi-info.org/fundingpartners]. Part of the data used in preparation of this article were obtained from the SchizConnect database (http://schizconnect.org). As such, the investigators within SchizConnect contributed to the design and implementation of SchizConnect and/or provided data but did not participate in analysis or writing of this report. Data collection and sharing for this project was funded by NIMH cooperative agreement 1U01 MH097435. João Sato is supported by Sao Paulo Research Foundation (FAPESP, Brazil) Grants 2018/04654-9 and 2018/21934-5

    Towards precision medicine in psychosis: Benefits and challenges of multimodal multicenter studies - PSYSCAN: Translating neuroimaging findings from research into clinical practice

    No full text
    In the last 2 decades, several neuroimaging studies investigated brain abnormalities associated with the early stages of psychosis in the hope that these could aid the prediction of onset and clinical outcome. Despite advancements in the field, neuroimaging has yet to deliver. This is in part explained by the use of univariate analytical techniques, small samples and lack of statistical power, lack of external validation of potential biomarkers, and lack of integration of nonimaging measures (eg, genetic, clinical, cognitive data). PSYSCAN is an international, longitudinal, multicenter study on the early stages of psychosis which uses machine learning techniques to analyze imaging, clinical, cognitive, and biological data with the aim of facilitating the prediction of psychosis onset and outcome. In this article, we provide an overview of the PSYSCAN protocol and we discuss benefits and methodological challenges of large multicenter studies that employ neuroimaging measures

    Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders

    No full text
    Importance: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures: Interregional profiles of group difference in cortical thickness between cases and controls. Results: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. Conclusions and Relevance: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders
    corecore