43 research outputs found

    C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy

    Get PDF
    Introduction Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. Results and Conclusions In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy

    Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease

    No full text
    Background: Weused a sensitive and specific beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) assay to determine the relationship between BACE1 activity in cerebrospinal fluid (CSF) and markers of APP metabolism and axonal degeneration in early and late stages of Alzheimer disease (AD). Objective: To assess CSF BACE1 activity in AD. Design: Case-control and longitudinal follow-up study. Setting: Specialized memory clinic. Patients: Eighty-seven subjects with AD, 33 cognitively normal control subjects, and 113 subjects with mild cognitive impairment (MCI), who were followed up for 3 to 6 years. Main Outcome Measures: Cerebrospinal fluid BACE1 activity in relation to diagnosis and CSF levels of secreted APP and amyloid beta protein (A beta) isoforms and the axonal degeneration marker total tau. Results: Subjects with AD had higher CSF BACE1 activity (median, 30 pM [range, 11-96 pM]) than controls (median, 23pM [range, 8-43 pM]) (P=.02). Subjects with MCI who progressed to AD during the follow-up period had higher baseline BACE1 activity (median, 35 pM [range, 18-71 pM]) than subjects with MCI who remained stable (median, 29 pM [range, 14-83 pM]) (P = 0.57, P <=. 009). Conclusion: Elevated BACE1 activity may contribute to the amyloidogenic process in sporadic AD and is associated with the intensity of axonal degeneration

    Safety and Target Engagement of Complement C1q Inhibitor ANX007 in Neurodegenerative Eye Disease

    No full text
    Purpose: Complement C1q, the initiating molecule of the classical complement cascade, is involved in synapse elimination and neuronal loss in neurodegenerative diseases including glaucoma. Here we report an evaluation of the safety, tolerability, and ocular pharmacokinetics (PK) and pharmacodynamics of intravitreal (IVT) injections of ANX007, an anti-C1q monoclonal antibody fragment that blocks activation of the classical complement cascade. Design: An open-label, single-dose-escalation phase Ia study followed by a double-masked, randomized, sham-controlled, repeat-injection phase Ib study. Participants: A total of 26 patients with primary open-angle glaucoma. Methods: Nine patients with primary open-angle glaucoma (mean Humphrey visual field deviation between −3 and −18 decibels [dB]) were enrolled in phase Ia and received single doses of ANX007 (1.0 mg, n = 3; 2.5 mg, n = 3; or 5.0 mg, n = 3). Seventeen patients (mean Humphrey visual field deviation between −3 and −24 dB) were enrolled in phase Ib and randomized to 2 monthly doses of ANX007 (sham, n = 6; 2.5 mg ANX007, n = 6; or 5 mg ANX007, n = 5). Main Outcome Measures: Safety and tolerability (including laboratory evaluation of urinalysis, complete blood count, and serum chemistries), ANX007 PK, target engagement, and immunogenicity. Results: The mean age overall was 70 years in phase Ia and 68 years in phase Ib. In both studies, no serious adverse events were observed, no non-ocular treatment-emergent adverse events (TEAEs) attributable to study drug were reported, and ocular TEAEs were mild. Intraocular pressure returned to normal levels for all patients within 45 minutes of IVT injection. No clinically significant deviations in laboratory results were observed. In the phase Ib study, C1q in the aqueous humor was reduced to undetectable levels in both the 2.5 mg and 5 mg cohorts 4 weeks after the first ANX007 dose. Conclusions: In these studies, single and repeat IVT ANX007 injections were well tolerated and demonstrated full target engagement 4 weeks after dosing with both low and high doses, supporting monthly or less-frequent dosing. Further investigation in neurodegenerative ocular diseases is warranted. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references

    Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease

    Get PDF
    <div><p>Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.</p> </div
    corecore