15,824 research outputs found

    Designing a Self-reversing Track Layout with TrackMaster Tracks

    Get PDF
    This research project sought to find general track formations that allowed battery operated locomotives to traverse the entire train track in both directions infinitely. These formations allowed for any number of track pieces from TrackMaster Thomas and Friends sets by Fisher Price. The research looked at start position of the train and presetting of the switches as well as what is necessary to have a complete track with no dead ends. Surprisingly, there was found to be only one track formation that allowed for entire traversal of the track in both directions. This layout was termed a dog bone and consisted of two switch pieces connected at the ends with the tips of both switches connecting to themselves on the same switch. A proof that this layout is the only layout that satisfies the conditions is given

    What is a composite citation? An introduction

    Get PDF
    No abstract available

    Prospects for computational steering of evolutionary computation

    Get PDF
    Currently, evolutionary computation (EC) typically takes place in batch mode: algorithms are run autonomously, with the user providing little or no intervention or guidance. Although it is rarely possible to specify in advance, on the basis of EC theory, the optimal evolutionary algorithm for a particular problem, it seems likely that experienced EC practitioners possess considerable tacit knowledge of how evolutionary algorithms work. In situations such as this, computational steering (ongoing, informed user intervention in the execution of an otherwise autonomous computational process) has been profitably exploited to improve performance and generate insights into computational processes. In this short paper, prospects for the computational steering of evolutionary computation are assessed, and a prototype example of computational steering applied to a coevolutionary algorithm is presented

    Quantum data hiding in the presence of noise

    Get PDF
    When classical or quantum information is broadcast to separate receivers, there exist codes that encrypt the encoded data such that the receivers cannot recover it when performing local operations and classical communication, but they can decode reliably if they bring their systems together and perform a collective measurement. This phenomenon is known as quantum data hiding and hitherto has been studied under the assumption that noise does not affect the encoded systems. With the aim of applying the quantum data hiding effect in practical scenarios, here we define the data-hiding capacity for hiding classical information using a quantum channel. Using this notion, we establish a regularized upper bound on the data hiding capacity of any quantum broadcast channel, and we prove that coherent-state encodings have a strong limitation on their data hiding rates. We then prove a lower bound on the data hiding capacity of channels that map the maximally mixed state to the maximally mixed state (we call these channels "mictodiactic"---they can be seen as a generalization of unital channels when the input and output spaces are not necessarily isomorphic) and argue how to extend this bound to generic channels and to more than two receivers.Comment: 12 pages, accepted for publication in IEEE Transactions on Information Theor

    Almost Certain Escape from Black Holes

    Full text link
    This paper examines how black holes might compute in light of recent models of the black-hole final state. These models suggest that quantum information can escape from the black hole by a process akin to teleportation. They require a specific final state and restrictions on the interaction between the collapsing matter and the incoming Hawking radiation for quantum information to escape. This paper shows that for an arbitrary final state and for generic interactions between matter and Hawking radiation, the quantum information about how the hole was formed and the results of any computation performed by the matter inside the hole escapes with fidelity exponentially close to 1.Comment: 9 Pages, Te
    corecore