4,980 research outputs found
Sodium Absorption From the Exoplanetary Atmosphere of HD189733b Detected in the Optical Transmission Spectrum
We present the first ground-based detection of sodium absorption in the
transmission spectrum of an extrasolar planet. Absorption due to the atmosphere
of the extrasolar planet HD189733b is detected in both lines of the NaI
doublet. High spectral resolution observations were taken of eleven transits
with the High Resolution Spectrograph (HRS) on the 9.2 meter Hobby-Eberly
Telescope (HET). The NaI absorption in the transmission spectrum due to
HD189733b is (-67.2 +/- 20.7) x 10^-5 deeper in the ``narrow'' spectral band
that encompasses both lines relative to adjacent bands. The 1-sigma error
includes both random and systematic errors, and the detection is >3-sigma. This
amount of relative absorption in NaI for HD189733b is ~3x larger than detected
for HD209458b by Charbonneau et al. (2002), and indicates these two
hot-Jupiters may have significantly different atmospheric properties.Comment: 12 pages, 2 figures; Accepted for publication in ApJ Letter
Causal connectivity of evolved neural networks during behavior
To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics
Discovering hidden sectors with mono-photon Z' searches
In many theories of physics beyond the Standard Model, from extra dimensions
to Hidden Valleys and models of dark matter, Z' bosons mediate between Standard
Model particles and hidden sector states. We study the feasibility of observing
such hidden states through an invisibly decaying Z' at the LHC. We focus on the
process pp -> \gamma Z' -> \gamma X X*, where X is any neutral, (quasi-) stable
particle, whether a Standard Model (SM) neutrino or a new state. This
complements a previous study using pp -> Z Z' -> l+ l- X X*. Only the Z' mass
and two effective charges are needed to describe this process. If the Z' decays
invisibly only to Standard Model neutrinos, then these charges are predicted by
observation of the Z' through the Drell-Yan process, allowing discrimination
between Z' decays to SM neutrinos and invisible decays to new states. We
carefully discuss all backgrounds and systematic errors that affect this
search. We find that hidden sector decays of a 1 TeV Z' can be observed at 5
sigma significance with 50 fb^{-1} at the LHC. Observation of a 1.5 TeV state
requires super-LHC statistics of 1 ab^{-1}. Control of the systematic errors,
in particular the parton distribution function uncertainty of the dominant Z
\gamma background, is crucial to maximize the LHC searchComment: 13 pages, 4 figure
Invariant submanifold for series arrays of Josephson junctions
We study the nonlinear dynamics of series arrays of Josephson junctions in
the large-N limit, where N is the number of junctions in the array. The
junctions are assumed to be identical, overdamped, driven by a constant bias
current and globally coupled through a common load. Previous simulations of
such arrays revealed that their dynamics are remarkably simple, hinting at the
presence of some hidden symmetry or other structure. These observations were
later explained by the discovery of (N - 3) constants of motion, each choice of
which confines the resulting flow in phase space to a low-dimensional invariant
manifold. Here we show that the dimensionality can be reduced further by
restricting attention to a special family of states recently identified by Ott
and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an
invariant submanifold of dimension one less than that found earlier. We derive
and analyze the flow on this submanifold for two special cases: an array with
purely resistive loading and another with resistive-inductive-capacitive
loading. Our results recover (and in some instances improve) earlier findings
based on linearization arguments.Comment: 10 pages, 6 figure
Large scale kinematics and dynamical modelling of the Milky Way nuclear star cluster
Within the central 10pc of our Galaxy lies a dense nuclear star cluster
(NSC), and similar NSCs are found in most nearby galaxies. Studying the
structure and kinematics of NSCs reveals the history of mass accretion of
galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we
can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a
reference object for understanding the formation of all NSCs. We have used the
NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an
integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use
this data set to extract stellar kinematics both of individual stars and from
the unresolved integrated light spectrum. We present a velocity and dispersion
map from the integrated light and model these kinematics using kinemetry and
axisymmetric Jeans models. We also measure CO bandhead strengths of 1,375
spectra from individual stars. We find kinematic complexity in the NSCs radial
velocity map including a misalignment of the kinematic position angle by 9
degree counterclockwise relative to the Galactic plane, and indications for a
rotating substructure perpendicular to the Galactic plane at a radius of 20" or
0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We
also show that our kinematic data results in a significant underestimation of
the supermassive black hole (SMBH) mass. The kinematic substructure and
position angle misalignment may hint at distinct accretion events. This
indicates that the MWNSC grew at least partly by the mergers of massive star
clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff
- M_NSC relation. The underestimation of the SMBH mass might be caused by the
kinematic misalignment and a stellar population gradient. But it is also
possible that there is a bias in SMBH mass measurements obtained with
integrated light.Comment: 20 pages, 19 Figures, Accepted for publication in A&
Pilot weather advisor
The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft
- …