97 research outputs found

    Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.

    Get PDF
    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified

    Supersymmetric dS/CFT

    Full text link
    We put forward new explicit realisations of dS/CFT that relate N=2{\cal N}=2 supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.Comment: V2: references and comments added, typos corrected, version published in JHEP; 27 pages, 3 figures, 1 tabl

    SH3 interactome conserves general function over specific form

    Get PDF
    Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form

    Oncogenic ERBB3 Mutations in Human Cancers

    Get PDF
    SummaryThe human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ∼11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo

    Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome.</p> <p>Methods</p> <p>We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays.</p> <p>Results</p> <p>Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%.</p> <p>We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the <it>SLC45A3-ELK4 </it>e4-e2 TIC to <it>ERG</it>-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines.</p> <p>Conclusions</p> <p>Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as <it>MSMB-NCOA4</it>, may play functional roles in cancer.</p
    corecore