13 research outputs found

    Another Look at Some Isogeny Hardness Assumptions

    Get PDF
    The security proofs for isogeny-based undeniable signature schemes have been based primarily on the assumptions that the One-Sided Modified SSCDH problem and the One-More SSCDH problem are intractable. We challenge the validity of these assumptions, showing that both the decisional and computational variants of these problems can be solved in polynomial time. We further demonstrate an attack, applicable to two undeniable signature schemes, one of which was proposed at PQCrypto 2014. The attack allows to forge signatures in 24位/5 steps on a classical computer. This is an improvement over the expected classical security of 2位, where 位 denotes the chosen security parameter.SCOPUS: cp.kinfo:eu-repo/semantics/publishedCryptographers Track at the RSA Conference, CT-RSA 2020; San Francisco; United States; 24 February 2020 through 28 February 2020ISBN: 978-303040185-

    CITALOPRAM AND MANIA

    No full text

    Investigating the NRAS 5' UTR as a target for small molecules

    Get PDF
    Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5' untranslated region (UTR) (5' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy.</p
    corecore