22 research outputs found
What is the role of ethics in accreditation guidelines for engineering programmes in Europe?
The Washington Accord emphasises the role of ethical and societal considerations in the practice of engineering. Increasingly, national accrediting bodies are alsoexpecting to see evidence in the delivery and assessment of ethics throughoutengineering programmes. Nevertheless, there is still little known on how the process of evaluating ethics can best serve the function of accreditation ensuring quality assurance and quality improvement. The aim of this paper is to look at the top-down approach and analyse what role engineering ethics plays in national accreditation documentations in Europe. A multi-country analysis of how and where ethics appears in the systems of accreditation was carried out for the UK, Ireland, France, and Switzerland. The competencies, programme outcomes or learning outcomes were reviewed and explicit or implicit references to ethics education were identified. A quantitative and qualitative word analysis was carried out by extracting verbs and comparing verb definitions that were stated. Verbs were categorised under Doing actions, Thinking actions or both and compared to Bloom’s Taxonomy of Learning. In all cases, ethics was explicitly mentioned however limited to 1 or 2 sections of the documents reviewed. The majority of statements linking to ethics were implicit,opening room for interpretation. A more conscious effort to engage engineeringethics in all aspects of engineering programmes as well as using higher levels ofBloom’s taxonomy should be made where engineering ethics education is applied in practice
What is the role of ethics in accreditation guidelines for engineering programmes in Europe?
The Washington Accord emphasises the role of ethical and societal considerations in the practice of engineering. Increasingly, national accrediting bodies are alsoexpecting to see evidence in the delivery and assessment of ethics throughoutengineering programmes. Nevertheless, there is still little known on how the process of evaluating ethics can best serve the function of accreditation ensuring quality assurance and quality improvement. The aim of this paper is to look at the top-down approach and analyse what role engineering ethics plays in national accreditation documentations in Europe. A multi-country analysis of how and where ethics appears in the systems of accreditation was carried out for the UK, Ireland, France, and Switzerland. The competencies, programme outcomes or learning outcomes were reviewed and explicit or implicit references to ethics education were identified. A quantitative and qualitative word analysis was carried out by extracting verbs and comparing verb definitions that were stated. Verbs were categorised under Doing actions, Thinking actions or both and compared to Bloom’s Taxonomy of Learning. In all cases, ethics was explicitly mentioned however limited to 1 or 2 sections of the documents reviewed. The majority of statements linking to ethics were implicit,opening room for interpretation. A more conscious effort to engage engineeringethics in all aspects of engineering programmes as well as using higher levels ofBloom’s taxonomy should be made where engineering ethics education is applied in practice
Competition between fluctuations and disorder in frustrated magnets
We investigate the effects of impurities on the nature of the phase
transition in frustrated magnets, in d=4-epsilon dimensions. For sufficiently
small values of the number of spin components, we find no physically relevant
stable fixed point in the deep perturbative region (epsilon << 1), contrarily
to what is to be expected on very general grounds. This signals the onset of
important physical effects.Comment: 4 pages, 3 figures, published versio
Two-particle irreducible effective action approach to nonlinear current conserving approximations in driven systems
Using closed-time path two-particle irreducible coarse-grained effective
action (CTP 2PI CGEA) techniques, we study the response of an open interacting
electronic system to time-dependent external electromagnetic fields. We show
that the CTP 2PI CGEA is invariant under a simultaneous gauge transformation of
the external field and the full Schwinger-Keldysh propagator, and that this
property holds even when the loop expansion of the CTP 2PI CGEA is truncated at
arbitrary order. The effective action approach provides a systematic way of
calculating the propagator and response functions of the system, via the
Schwinger-Dyson equation and the Bethe-Salpeter equations, respectively. We
show that, due to the invariance of the CTP 2PI CGEA under external gauge
transformations, the response functions calculated from it satisfy the
Ward-Takahashi hierarchy, thus warranting the conservation of the electronic
current beyond the expectation value level. We also clarify the connection
between nonlinear response theory and the WT hierarchy, and discuss an example
of an ad hoc approximation that violate it. These findings may be useful in the
study of current fluctuations in correlated electronic pumping devices.Comment: 30 pages. Accepted for publication in JPC
Supersymmetric Thermalization and Quasi-Thermal Universe: Consequences for Gravitinos and Leptogenesis
Motivated by our earlier paper \cite{am}, we discuss how the infamous
gravitino problem has a natural built in solution within supersymmetry.
Supersymmetry allows a large number of flat directions made up of {\it gauge
invariant} combinations of squarks and sleptons. Out of many at least {\it one}
generically obtains a large vacuum expectation value during inflation. Gauge
bosons and Gauginos then obtain large masses by virtue of the Higgs mechanism.
This makes the rate of thermalization after the end of inflation very small and
as a result the Universe enters a {\it quasi-thermal phase} after the inflaton
has completely decayed. A full thermal equilibrium is generically established
much later on when the flat direction expectation value has substantially
decareased. This results in low reheat temperatures, i.e., , which are compatible with the stringent bounds arising from the
big bang nucleosynthesis. There are two very important implications: the
production of gravitinos and generation of a baryonic asymmetry via
leptogenesis during the quasi-thermal phase. In both the cases the abundances
depend not only on an effective temperature of the quasi-thermal phase (which
could be higher, i.e., ), but also on the state of equilibrium
in the reheat plasma. We show that there is no ``thermal gravitino problem'' at
all within supersymmetry and we stress on a need of a new paradigm based on a
``quasi-thermal leptogenesis'', because in the bulk of the parameter space the
{\it old} thermal leptogenesis cannot account for the observed baryon
asymmetry.Comment: 53 pages. Final version published in JCA
The approach to thermalization in the classical phi^4 theory in 1+1 dimensions: energy cascades and universal scaling
We study the dynamics of thermalization and the approach to equilibrium in
the classical phi^4 theory in 1+1 spacetime dimensions. At thermal equilibrium
we exploit the equivalence between the classical canonical averages and
transfer matrix quantum traces of the anharmonic oscillator to obtain exact
results for the temperature dependence of several observables, which provide a
set of criteria for thermalization. We find that the Hartree approximation is
remarkably accurate in equilibrium. The non-equilibrium dynamics is studied by
numerically solving the equations of motion in light-cone coordinates for a
broad range of initial conditions and energy densities.The time evolution is
described by several stages with a cascade of energy towards the ultraviolet.
After a transient stage, the spatio-temporal gradient terms become larger than
the nonlinear term and a stage of universal cascade emerges.This cascade starts
at a time scale t_0 independent of the initial conditions (except for very low
energy density). Here the power spectra feature universal scaling behavior and
the front of the cascade k(t) grows as a power law k(t) sim t^alpha with alpha
lesssim 0.25. The wake behind the cascade is described as a state of Local
Thermodynamic Equilibrium (LTE) with all correlations being determined by the
equilibrium functional form with an effective time dependent temperatureTeff(t)
which slowly decreases as sim t^{-alpha}.Two well separated time scales emerge
while Teff(t) varies slowly, the wavectors in the wake with k < k(t) attain LTE
on much shorter time scales.This universal scaling stage ends when the front of
the cascade reaches the cutoff at a time t_1 sim a^{-1/alpha}. Virialization
starts to set much earlier than LTE. We find that strict thermalization is
achieved only for an infinite time scale.Comment: relevance for quantum field theory discussed providing validity
criteria. To appear in Phys. Rev.
Infrared Behaviour of The Gluon Propagator in Non-Equilibrium Situations
The infrared behaviour of the medium modified gluon propagator in
non-equilibrium situations is studied in the covariant gauge using the
Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic
screening mass is non-zero at the one loop level whenever the initial gluon
distribution function is non isotropic with the assumption that the
distribution function of the gluon is not divergent at zero transverse
momentum. For isotropic gluon distribution functions, such as those describing
local equilibrium, the magnetic mass at one loop level is zero which is
consistent with finite temperature field theory results. Assuming that a
reasonable initial gluon distribution function can be obtained from a
perturbative QCD calculation of minijets, we determine these out of equilibrium
values for the initial magnetic and Debye screening masses at energy densities
appropriate to RHIC and LHC. We also compare the magnetic masses obtained here
with those obtained using finite temperature lattice QCD methods at similar
temperatures at RHIC and LHC.Comment: 21 pages latex, 4 figures, final version to be published in Phys.
Rev.
Adult Male Mice Emit Context-Specific Ultrasonic Vocalizations That Are Modulated by Prior Isolation or Group Rearing Environment
Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals