224 research outputs found

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Network analysis identifies weak and strong links in a metapopulation system

    Get PDF
    The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains unresolved. Furthermore, the use and interpretation of classical methods are still bounded by the need for a priori information and underlying assumptions that are seldom respected in natural systems. Network theory was applied to map the genetic structure in a metapopulation system by using microsatellite data from populations of a threatened seagrass, Posidonia oceanica, across its whole geographical range. The network approach, free from a priori assumptions and from the usual underlying hypotheses required for the interpretation of classical analyses, allows both the straightforward characterization of hierarchical population structure and the detection of populations acting as hubs critical for relaying gene flow or sustaining the metapopulation system. This development opens perspectives in ecology and evolution in general, particularly in areas such as conservation biology and epidemiology, where targeting specific populations is crucial

    Botulinum toxin A modifies nociceptive withdrawal reflex in subacute stroke patients

    Get PDF
    Objectives: The aims of this study were to evaluate the pattern of the nociceptive withdrawal reflex (NWR) of the upper limb at rest and after injection of Botulinum toxin type A (BoNT-A) in poststroke subacute hemiparetic patients. Methods: Fourteen patients with poststroke subacute hemiparesis underwent clinical and instrumental evaluation and BoNT-A injection. Painful electrical stimulation was applied to induce the NWR. Baseline EMG activity and NWR recordings (EMG and kinematic response) were performed at T0, one month (T1), and three months (T2) after the BoNT-A injection, as were Modified Ashworth Scale (MAS) and Functional Independence Measure (FIM) scores. Results: Comparison of results at T0, T1, and T2 revealed significant changes in the MAS score for the elbow (p < 0.001) and wrist joints (p < 0.001) and in the FIM score at T0 and T2. BoNT-A injection had a significant effect on both NWR amplitude and baseline EMG activity in the posterior deltoid (PD) and flexor carpi radialis (FCR) muscles as well as in all averaged muscles. Analysis of elbow kinematics before and after treatment revealed that the reflex probability rates were significantly higher at T1 and T2 than at T0. Conclusion: Injection of BoNT-A in the subacute phase of stroke can modify both the baseline EMG activity and the NWR-related EMG responses in the upper limb muscles irrespective of the site of injection; furthermore, the reflex-mediated defensive mechanical responses, that is, shoulder extension and abduction and elbow flexion, increased after treatment. BoNT-A injection may be a useful treatment in poststroke spasticity with a potential indirect effect on spinal neurons

    Associação de espécies florestais com forrageiras para ocupação de áreas degradadas.

    Get PDF
    bitstream/item/57383/1/CPATU-PA145.pd

    Progressive modular rebalancing system and visual cueing for gait rehabilitation in parkinson’s disease. A pilot, randomized, controlled trial with crossover

    Get PDF
    Introduction: The progressive modular rebalancing (PMR) system is a comprehensive rehabilitation approach derived from proprioceptive neuromuscular facilitation principles. PMR training encourages focus on trunk and proximal muscle function through direct perception, strength, and stretching exercises and emphasizes bi-articular muscle function in the improvement of gait performance. Sensory cueing, such as visual cues (VC), is one of the more established techniques for gait rehabilitation in PD. In this study, we propose PMR combined with VC for improving gait performance, balance, and trunk control during gait in patients with PD. Our assumption herein was that the effect of VC may add to improved motor performance induced by the PMR treatment. The primary aim of this study was to evaluate whether the PMR system plus VC was a more effective treatment option than standard physiotherapy in improving gait function in patients with PD. The secondary aim of the study was to evaluate the effect of this treatment on motor function severity. Design: Two-center, randomized, controlled, observer-blind, crossover study with a 4-month washout period. Participants: Forty individuals with idiopathic PD in Hoehn and Yahr stages 1–4. Intervention: Eight-week rehabilitation programs consisting of PMR plus VC (treatment A) and conventional physiotherapy (treatment B). Primary outcome measures: Spatiotemporal gait parameters, joint kinematics, and trunk kinematics. Secondary outcome measures: UPDRS-III scale scores. Results: The rehabilitation program was well-tolerated by individuals with PD and most participants showed improvements in gait variables and UPDRS-III scores with both treatments. However, patients who received PMR with VC showed better results in gait function with regard to gait performance (increased step length, gait speed, and joint kinematics), gait balance (increased step width and double support duration), and trunk control (increased trunk motion) than those receiving conventional physiotherapy. While crossover results revealed some differences in primary outcomes, only 37.5% of patients crossed over between the groups. As a result, our findings should be interpreted cautiously. Conclusions: The PMR plus VC program could be used to improve gait function and severity motor of motor deficit in individuals with PD
    corecore