7 research outputs found

    Implication of voltage-gated potassium channels in neoplastic cell proliferation

    Get PDF
    Voltage-gated potassium channels (Kv) are the largest group of ion channels. Kv are involved in controlling the resting potential and action potential duration in the heart and brain. Additionally, these proteins participate in cell cycle progression as well as in several other important features in mammalian cell physiology, such as activation, differentiation, apoptosis, and cell volume control. Therefore, Kv remarkably participate in the cell function by balancing responses. The implication of Kv in physiological and pathophysiological cell growth is the subject of study, as Kv are proposed as therapeutic targets for tumor regression. Though it is widely accepted that Kv channels control proliferation by allowing cell cycle progression, their role is controversial. Kv expression is altered in many cancers, and their participation, as well as their use as tumor markers, is worthy of effort. There is an ever-growing list of Kv that remodel during tumorigenesis. This review focuses on the actual knowledge of Kv channel expression and their relationship with neoplastic proliferation. In this work, we provide an update of what is currently known about these proteins, thereby paving the way for a more precise understanding of the participation of Kv during cancer development

    Estrogenicity of resin-based composites and sealants used in dentistry.

    Get PDF
    We tested some resin-based composites used in dentistry for their estrogenic activity. A sealant based on bisphenol-A diglycidylether methacrylate (bis-GMA) increased cell yields, progesterone receptor expression, and pS2 secretion in human estrogen-target, serum-sensitive MCF7 breast cancer cells. Estrogenicity was due to bisphenol-A and bisphenol-A dimethacrylate, monomers found in the base paste of the dental sealant and identified by mass spectrometry. Samples of saliva from 18 subjects treated with 50 mg of a bis-GMA-based sealant applied on their molars were collected 1 hr before and after treatment. Bisphenol-A (range 90-931 micrograms) was identified only in saliva collected during a 1-hr period after treatment. The use of bis-GMA-based resins in dentistry, and particularly the use of sealants in children, appears to contribute to human exposure to xenoestrogens

    Routing of Kv7.1 to endoplasmic reticulum plasma membrane junctions

    Get PDF
    AIM: The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the I(Ks) current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS: To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS: We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION: Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels

    The Effect of Temperature on Bisphenol: An Elution from Dental Resins

    No full text
    corecore