103 research outputs found

    Dynamic cerebral autoregulation after intracerebral hemorrhage: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic cerebral autoregulation after intracerebral hemorrhage (ICH) remains poorly understood. We performed a case-control study to compare dynamic autoregulation between ICH patients and healthy controls.</p> <p>Methods</p> <p>Twenty-one patients (66 ± 15 years) with early (< 72 hours) lobar or basal ganglia ICH were prospectively studied and compared to twenty-three age-matched controls (65 ± 9 years). Continuous measures of mean flow velocity (MFV) in the middle cerebral artery and mean arterial blood pressure (MAP) were obtained over 5 min. Cerebrovascular resistance index (CVR<sub>i</sub>) was calculated as the ratio of MAP to MFV. Dynamic cerebral autoregulation was assessed using transfer function analysis of spontaneous MAP and MFV oscillations in the low (0.03-0.15 Hz) and high (0.15-0.5 Hz) frequency ranges.</p> <p>Results</p> <p>The ICH group demonstrated higher CVR<sub>i </sub>compared to controls (ipsilateral: 1.91 ± 1.01 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; contralateral: 2.01 ± 1.24 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; vs. control: 1.42 ± 0.45 mmHg·s·cm<sup>-1</sup>). The ICH group had higher gains than controls in the low (ipsilateral: 1.33 ± 0.58%/mmHg, <it>p </it>= 0.0005; contralateral: 1.47 ± 0.98%/mmHg, <it>p </it>= 0.004; vs. control: 0.82 ± 0.30%/mmHg) and high (ipsilateral: 2.11 ± 1.31%/mmHg, <it>p </it>< 0.0001; contralateral: 2.14 ± 1.49%/mmHg, <it>p </it>< 0.0001; vs. control: 0.66 ± 0.26%/mmHg) frequency ranges. The ICH group also had higher coherence in the contralateral hemisphere than the control (ICH contralateral: 0.53 ± 0.38, <it>p </it>= 0.02; vs. control: 0.38 ± 0.15) in the high frequency range.</p> <p>Conclusions</p> <p>Patients with ICH had higher gains in a wide range of frequency ranges compared to controls. These findings suggest that dynamic cerebral autoregulation may be less effective in the early days after ICH. Further study is needed to determine the relationship between hematoma size and severity of autoregulation impairment.</p

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    HDAC6 Regulates LPS-Tolerance in Astrocytes

    Get PDF
    Inflammatory tolerance is a crucial mechanism that limits inflammatory responses in order to avoid prolonged inflammation that may damage the host. Evidence that chronic inflammation contributes to the neuropathology of prevalent neurodegenerative and psychiatric diseases suggests that inflammatory tolerance mechanisms are often inadequate to control detrimental inflammation in the central nervous system. Thus, identifying mechanisms that regulate neuroinflammatory tolerance may reveal opportunities for bolstering tolerance to reduce chronic inflammation in these diseases. Examination of tolerance after repeated lipopolysaccharide (LPS) treatment of mouse primary astrocytes demonstrated that histone deacetylase (HDAC) activity promoted tolerance, opposite to the action of glycogen synthase kinase-3 (GSK3), which counteracts tolerance. HDAC6 in particular was found to be critical for tolerance induction, as its deacetylation of acetyl-tubulin was increased during LPS tolerance, this was enhanced by inhibition of GSK3, and the HDAC6 inhibitor tubacin completely blocked tolerance and the promotion of tolerance by inhibition of GSK3. These results reveal opposing interactions between HDAC6 and GSK3 in regulating tolerance, and indicate that shifting the balance between these two opposing forces on inflammatory tolerance can obliterate or enhance tolerance to LPS in astrocytes

    The CD34-Related Molecule Podocalyxin Is a Potent Inducer of Microvillus Formation

    Get PDF
    BACKGROUND: Podocalyxin is a CD34-related transmembrane protein involved in hematopoietic cell homing, kidney morphogenesis, breast cancer progression, and epithelial cell polarization. Although this sialomucin has been shown to block cell adhesion, the mechanisms involved remain enigmatic. It has, however, been postulated that the adaptor proteins NHERF-1 and 2 could regulate apical targeting of Podocalyxin by linking it to the actin cytoskeleton. PRINCIPAL FINDINGS: Here, in contrast, we find that full-length Podocalyxin acts to recruit NHERF-1 to the apical domain. Moreover, we show that ectopic expression of Podocalyxin in epithelial cells leads to microvillus formation along an expanded apical domain that extends laterally to the junctional complexes. Removal of the C-terminal PDZ-binding domain of Podocalyxin abolishes NHERF-1 recruitment but, surprisingly, has no effect on the formation of microvilli. Instead, we find that the extracellular domain and transmembrane region of Podocalyxin are sufficient to direct recruitment of filamentous actin and ezrin to the plasma membrane and induce microvillus formation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that this single molecule can modulate NHERF localization and, independently, act as a key orchestrator of apical cell morphology, thereby lending mechanistic insights into its multiple roles as a polarity regulator, tumor progression marker, and anti-adhesin

    Flotillins Interact with PSGL-1 in Neutrophils and, upon Stimulation, Rapidly Organize into Membrane Domains Subsequently Accumulating in the Uropod

    Get PDF
    BACKGROUND: Neutrophils polarize and migrate in response to chemokines. Different types of membrane microdomains (rafts) have been postulated to be present in rear and front of polarized leukocytes and disruption of rafts by cholesterol sequestration prevents leukocyte polarization. Reggie/flotillin-1 and -2 are two highly homologous proteins that are ubiquitously enriched in detergent resistant membranes and are thought to shape membrane microdomains by forming homo- and hetero-oligomers. It was the goal of this study to investigate dynamic membrane microdomain reorganization during neutrophil activation. METHODOLOGY/PRINCIPAL FINDINGS: We show now, using immunofluorescence staining and co-immunoprecipitation, that endogenous flotillin-1 and -2 colocalize and associate in resting spherical and polarized primary neutrophils. Flotillins redistribute very early after chemoattractant stimulation, and form distinct caps in more than 90% of the neutrophils. At later time points flotillins accumulate in the uropod of polarized cells. Chemotactic peptide-induced redistribution and capping of flotillins requires integrity and dynamics of the actin cytoskeleton, but does not involve Rho-kinase dependent signaling related to formation of the uropod. Both flotillin isoforms are involved in the formation of this membrane domain, as uropod location of exogenously expressed flotillins is dramatically enhanced by co-overexpression of tagged flotillin-1 and -2 in differentiated HL-60 cells as compared to cells expressing only one tagged isoform. Flotillin-1 and -2 associate with P-selectin glycoprotein ligand 1 (PSGL-1) in resting and in stimulated neutrophils as shown by colocalization and co-immunoprecipitation. Neutrophils isolated from PSGL-1-deficient mice exhibit flotillin caps to the same extent as cells isolated from wild type animals, implying that PSGL-1 is not required for the formation of the flotillin caps. Finally we show that stimulus-dependent redistribution of other uropod-located proteins, CD43 and ezrin/radixin/moesin, occurs much slower than that of flotillins and PSGL-1. CONCLUSIONS/SIGNIFICANCE: These results suggest that flotillin-rich actin-dependent membrane microdomains are importantly involved in neutrophil uropod formation and/or stabilization and organize uropod localization of PSGL-1

    RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation

    Get PDF
    The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation

    The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC), to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide) in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments.</p> <p>Methods/Design</p> <p>The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older) with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control") for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP < 140 mm Hg and DBP < 90 mm Hg. Additional antihypertensives are added to achieve this goal if needed. Eligible participants are those with hypertension, defined as a blood pressure 140/90 mm Hg or greater, early cognitive impairment without dementia defined (10 or less out of 15 on the executive clock draw test or 1 standard deviation below the mean on the immediate memory subtest of the repeatable battery for the assessment of neuropsychological status and Mini-Mental-Status-exam >20 and without clinical diagnosis of dementia or Alzheimer's disease). Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives), 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory), cerebral blood flow, and carbon dioxide cerebral vasoreactivity.</p> <p>Discussion</p> <p>The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the threshold of dementia. Success of this trial will offer new therapeutic application of antihypertensives that inhibit the renin angiotensin system and new insights in the role of this system in aging.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00605072</p

    Orthostatic hypotension: clinical review and case study

    Get PDF
    Transient loss of consciousness (TLOC) accounts for 3% of all attendance in emergency departments within the UK. More than 90% of TLOC presentations are due to epileptic seizures, psychogenic seizures or syncope. However, in England and Wales in 2002, it was estimated that 92000 patients were incorrectly diagnosed with epilepsy, at an additional annual cost to the NHS of up to £189 million. This article will reflect on the case study of a 54-year-old female patient who presented with a possible TLOC, and had a background of long-term depression. Differential diagnoses will be discussed, but the article will focus on orthostatic hypotension. Being diagnosed with this condition is independently associated with an increased risk of all-cause mortality. Causes of orthostatic hypotension and the pathophysiology behind the condition will be discussed, highlighting the importance of obtaining an accurate clinical history. This is extremely pertinent if a patient collapses in an NHS setting and this is witnessed by nurses because they can contribute to the history of the type of collapse, to aid diagnosis and correct treatment. In addition, nurses have a valuable role to play in highlighting polypharmacy to doctors, and non-medical prescribers, as a contributing factor to orthostatic hypotension is polypharmacy. It is therefore important to accurately distinguish TLOC aetiology, not only to provide appropriate management, but to also identify patients at risk of morbidity/mortality related to underlying disease.N/

    Do agile managed information systems projects fail due to a lack of emotional intelligence?

    Get PDF
    YesAgile development methodologies (ADM) have become a widely implemented project management approach in Information Systems (IS). Yet, along with its growing popularity, the amount of concerns raised in regard to human related challenges caused by applyingADMare rapidly increasing. Nevertheless, the extant scholarly literature has neglected to identify the primary origins and reasons of these challenges. The purpose of this study is therefore to examine if these human related challenges are related to a lack of Emotional Intelligence (EI) by means of a quantitative approach. Froma sample of 194 agile practitioners, EI was found to be significantly correlated to human related challenges in agile teams in terms of anxiety, motivation, mutual trust and communication competence. Hence, these findings offer important new knowledge for IS-scholars, project managers and human resource practitioners, about the vital role of EI for staffing and training of agile managed IS-projects
    corecore