15 research outputs found

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH

    No full text
    Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O2−)] and the mechanisms underlying O2− production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O2− and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O2− generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9–11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased (P < 0.05). O2− levels were elevated (70–90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91ds-tat (50 μM) or by the mitochondrial respiratory chain inhibitors antimycin (10 μM) and rotenone (50 μM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 μM) also reduced (P < 0.05) O2− production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole (P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O2− generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O2− production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed
    corecore