23 research outputs found

    Blending single beam RoxAnn and multi-beam swathe QTC hydro-acoustic discrimination techniques for the Stonehaven area, Scotland, UK

    Get PDF
    Surface properties of the seabed in a 180 km2 area of coastal waters (14-57 m depth) off northeast Scotland were mapped by hydro-acoustic discrimination using single and multi-beam echosounders linked to signal processing systems (RoxAnn for the single beam, and Questor Tangent Corporation (QTC) Multiview for the multibeam). Subsequently, two ground truthing surveys were carried out, using grab and TV sampling. The RoxAnn and QTC-Multiview outputs showed strong similarity in their classifications of seabed types. Classifications generated by QTC-Multiview were used to supervise those based on seabed roughness and hardness indices produced by the RoxAnn system and thereby develop a ā€˜blendedā€™ map based on both systems. The resulting hydro-acoustic classes agreed well with a cluster analysis of data on sediment grain sizes from the grab sampling, and indicated that the area could be described by distinct regions of surface texture and surficial sediments ranging from muddy sand to boulders and rock

    Scoping the impact of tidal and wave energy extraction on suspended sediment concentrations and underwater light climate

    Get PDF
    The depth to which sunlight penetrates below the sea surface is one of the key factors determining the species composition and productivity of marine ecosystems. The effects range from the rate and fate of primary production, through the performance of visual predators such as fish, the potential for refuge from predators by migrating to depth, to the scope for seabed stabilisation by algal mats. Light penetration depends partly on spectral absorption by seawater and dissolved substances, but mainly on the scattering caused by suspended particulate material (SPM). Some of this SPM may be of biological origin, but in coastal waters the majority is mineral material originating ultimately from seabed disturbance and land erosion, the latter being deposited in the sea by rivers and aerial processes. SPM is maintained in the water column or deposited on the seabed depending on combinations of hydrodynamic processes including baroclinic (density-driven) or barotropic (mainly tidal and wind driven) currents, and wave action (Ward et al. 1984; Huettel et al. 1996). Since tidal and wave energy extraction must alter these hydrodynamic properties at some scales depending on the nature of the extraction process, we can expect some kind of impact on the concentration of the SPM. If these are large enough, we may have to consider the extent to which these may impact the underwater light environment and the local or regional ecology. Whilst several coupled hydrodynamic-sediment models exist to predict SPM distributions in aquatic systems, their skill level in open coastal and offshore marine waters is acknowledged to be relatively low. This is largely because the processes are not well understood and the formulations are largely based on empirical relationships rather than fundamental physical principles. The models are also highly demanding in terms of calibration data and computational resources. Hence their utility for predicting relatively subtle effects arising from changes in flow or wave environments due to energy extraction devices seems rather low. Here, we summarise the key mathematical functions describing the processes involved in sediment suspension, and propose a lightweight one-dimensional (vertical) model which can be used to scope the effects of changes in flow and wave energy on SPM

    Combining ecosystem modeling with serious gaming in support of transboundary maritime spatial planning

    Get PDF
    The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform

    A general framework for combining ecosystem models

    Get PDF
    When making predictions about ecosystems, we often have available a number of different ecosystem models that attempt to represent their dynamics in a detailed mechanistic way. Each of these can be used as a simulator of large-scale experiments and make projections about the fate of ecosystems under different scenarios to support the development of appropriate management strategies. However, structural differences, systematic discrepancies and uncertainties lead to different models giving different predictions. This is further complicated by the fact that the models may not be run with the same functional groups, spatial structure or time scale. Rather than simply trying to select a ā€œbestā€ model, or taking some weighted average, it is important to exploit the strengths of each of the models, while learning from the differences between them. To achieve this, we construct a flexible statistical model of the relationships between a collection of mechanistic models and their biases, allowing for structural and parameter uncertainty and for different ways of representing reality. Using this statistical meta-model, we can combine prior beliefs, model estimates and direct observations using Bayesian methods and make coherent predictions of future outcomes under different scenarios with robust measures of uncertainty. In this study, we take a diverse ensemble of existing North Sea ecosystem models and demonstrate the utility of our framework by applying it to answer the question what would have happened to demersal fish if fishing was to stop

    Mesoscale productivity fronts and local fishing opportunities in the European Seas

    Get PDF
    This study evaluates the relationship between both commercial and scientific spatial fisheries data and a new satellite-based estimate of potential fish production (Ocean Productivity available to Fish, OPFish) in the European Seas. To construct OPFish, we used productivity frontal features derived from chlorophyll-a horizontal gradients, which characterize 10%ā€“20% of the global phytoplankton production that effectively fuels higher trophic levels. OPFish is relatively consistent with the spatial distribution of both pelagic and demersal fish landings and catches per unit of effort (LPUEs and CPUEs, respectively). An index of harvest relative to ocean productivity (HP index) is calculated by dividing these LPUEs or CPUEs with OPFish. The HP index reflects the intensity of fishing by gear type with regard to local fish production. Low HP levels indicate lower LPUEs or CPUEs than expected from oceanic production, suggesting over-exploitation, while high HP levels imply more sustainable fishing. HP allows comparing the production-dependent suitability of local fishing intensities. Our results from bottom trawl data highlight that over-exploitation of demersal species from the shelves is twice as high in the Mediterranean Sea than in the North-East Atlantic. The estimate of HP index by dominant pelagic and demersal gears suggests that midwater and bottom otter trawls are associated with the lowest and highest overfishing, respectively. The contrasts of fishing intensity at local scales captured by the HP index suggest that accounting for the local potential fish production can promote fisheries sustainability in the context of ecosystem-based fisheries management as required by international marine policies

    Oxygen dynamics in shelf seas sediments incorporating seasonal variability

    Get PDF
    Shelf sediments play a vital role in global biogeochemical cycling and are particularly important areas of oxygen consumption and carbon mineralisation. Total benthic oxygen uptake, the sum of diffusive and faunal mediated uptake, is a robust proxy to quantify carbon mineralisation. However, oxygen uptake rates are dynamic, due to the diagenetic processes within the sediment, and can be spatially and temporally variable. Four benthic sites in the Celtic Sea, encompassing gradients of cohesive to permeable sediments, were sampled over four cruises to capture seasonal and spatial changes in oxygen dynamics. Total oxygen uptake (TOU) rates were measured through a suite of incubation experiments and oxygen microelectrode profiles were taken across all four benthic sites to provide the oxygen penetration depth and diffusive oxygen uptake (DOU) rates. The difference between TOU and DOU allowed for quantification of the fauna mediated oxygen uptake and diffusive uptake. High resolution measurements showed clear seasonal and spatial trends, with higher oxygen uptake rates measured in cohesive sediments compared to the permeable sediment. The significant differences in oxygen dynamics between the sediment types were consistent between seasons, with increasing oxygen consumption during and after the phytoplankton bloom. Carbon mineralisation in shelf sediments is strongly influenced by sediment type and seasonality

    Geodia and other massive sponges on Atlanto-Arctic upper bathyal mixed sediment

    No full text
    This biotope has been found at approximately 500 m on the eastern slopes of the Faroe-Shetland Channel. It principally consists of rather small sponge specimens that practically carpet the seafloor. Large sponges (tens of centimetres in diameter) are, however, common. The area where the community is observed experiences temperature fluctuations between 8Ā°C and heightend current speeds as a result of internal tides between Arctic and Atlantic environmental data. This assemblage is also known as Boreal 'Ostur'. The assemblage is recorded on both mixed and coarse sediment, but associated infaunal species are likely to differ. Characterizing species listed refer to all Geodia and other massive sponge assemblages not just those found associated with the zone and substrate specified in this biotope. (Information from Parry et al., 2015; JNCC, 2015)

    Ecological adaptations and commensal evolution of the Polynoidae (Polychaeta) in the Southwest Indian Ocean Ridge: A phylogenetic approach

    No full text
    The polychaete family polynoid is very large and includes a high diversity of behaviours, including numerous examples of commensal species. The comparison between free-living and commensal behaviours and the evolution of the relationships between commensal species and their hosts are valuable case studies of ecological adaptations. Deep-sea species of Polynoidae were sampled at four seamounts in the Southwest Indian Ridge and twenty specimens from seven species were selected to be analysed. Among them, there were free-living species, living within the three-dimensional framework of cold-water coral reefs, on coral rubble and on mobile sediments, and commensal species, associated with octocorals, hydrocorals (stylasterids), antipatharians and echinoderms (holothurian and ophiuroids). We analysed two mitochondrial (COI, 16S) and two nuclear (18S, 28S) ribosomal genetic markers and their combined sequences were compared with other Genbank sequences to assess the taxonomic relationships within the species under study, and the potential role of hosts in speciation processes. Most basal species of the sub-family Polynoinae are obligate symbionts showing specific morphological adaptations. Obligate and facultative commensal species and free-living species have evolved a number of times, although, according to our results, the obligate coral commensal species appear to be monophyletic
    corecore