60 research outputs found

    Fast Monte Carlo simulations and singularities in the probability distributions of non-equilibrium systems

    Full text link
    A numerical technique is introduced that reduces exponentially the time required for Monte Carlo simulations of non-equilibrium systems. Results for the quasi-stationary probability distribution in two model systems are compared with the asymptotically exact theory in the limit of extremely small noise intensity. Singularities of the non-equilibrium distributions are revealed by the simulations.Comment: 4 pages, 4 figure

    A nanodevice for rectification and pumping ions

    No full text

    A nanodevice for rectification and pumping ions

    No full text

    Peptide inhibition of ENaC.

    No full text
    Liddle's disease is an autosomal dominant form of human hypertension resulting from a basal activation of amiloride-sensitive Na+ channels (ENaC). This channel activation is produced by mutations in the beta- and/or gamma-carboxy-terminal cytoplasmic tails, in many cases causing a truncation of the last 45-76 amino acids. In this study, we tested two hypotheses; first, beta- and gamma-ENaC C-terminal truncation mutants (beta DeltaC and gamma DeltaC), in combination with the wild-type alpha-ENaC subunit, reproduce the Liddle's phenotype at the single channel level, i.e. an increase in open probability (Po), and second, these C-terminal regions of beta- and gamma-ENaC act as intrinsic blockers of this channel. Our results indicate that alpha beta DeltaC gamma DeltaC-rENaC, incorporated into planar lipid bilayers, has a significantly higher single channel Po compared to the wild-type channel (0.85 vs 0.60, respectively), and that 30-mer synthetic peptides corresponding to the C-terminal region of either beta- or gamma-ENaC block the basal-activated channel in a concentration-dependent fashion. Moreover, there was a synergy between the peptides for channel inhibition when added together. We conclude that the increase in macroscopic Na+ reabsorption that occurs in Liddle's disease is at least in part due to an increase in single channel Po and that the cytoplasmic tails of the beta- and gamma-ENaC subunits are important in the modulation of ENaC activity.Journal ArticleResearch Support, U.S. Gov't, P.H.S.info:eu-repo/semantics/publishe
    • …
    corecore