57 research outputs found

    A 3' → 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription

    Get PDF
    XPB is a subunit of the basal transcription factor TFIIH, which is also involved in nucleotide excision repair (NER) and potentially in cell cycle regulation. A frameshift mutation in the 3'-end of the XPB gene is responsible for a concurrence of two disorders: xeroderma pigmentosum (XP) and Cockayne's syndrome (CS). We have isolated TFIIH from cells derived from a patient (XP11BE) who carries this frameshift mutation (TFI-IHmut) and from the mother of this patient (TFIIHwt) to determine the biochemical consequences of the mutation. Although identical in composition and stoichiometry to TFIIHwt, TFIIHmut shows a reduced 3' → 5' XPB helicase activity. A decrease in helicase and DNA-dependent ATPase activities was also observed with the mutated recombinant XPB protein. The XPB mutation causes a severe NER defect. In addition, we provide evidence for a decrease in basal transcription activity in vitro. The latter defect may provide an explanation for many of the XP and CS symptoms that are difficult to rationalize based solely on an NER defect. Thus, this work presents the first detailed analysis of a naturally occurring mutation in a basal transcription factor and supports the concept that the combined XP/CS clinical entity is actually the result of a combined transcription/repair deficiency.</p

    A 3' → 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription

    Get PDF
    XPB is a subunit of the basal transcription factor TFIIH, which is also involved in nucleotide excision repair (NER) and potentially in cell cycle regulation. A frameshift mutation in the 3'-end of the XPB gene is responsible for a concurrence of two disorders: xeroderma pigmentosum (XP) and Cockayne's syndrome (CS). We have isolated TFIIH from cells derived from a patient (XP11BE) who carries this frameshift mutation (TFI-IHmut) and from the mother of this patient (TFIIHwt) to determine the biochemical consequences of the mutation. Although identical in composition and stoichiometry to TFIIHwt, TFIIHmut shows a reduced 3' → 5' XPB helicase activity. A decrease in helicase and DNA-dependent ATPase activities was also observed with the mutated recombinant XPB protein. The XPB mutation causes a severe NER defect. In addition, we provide evidence for a decrease in basal transcription activity in vitro. The latter defect may provide an explanation for many of the XP and CS symptoms that are difficult to rationalize based solely on an NER defect. Thus, this work presents the first detailed analysis of a naturally occurring mutation in a basal transcription factor and supports the concept that the combined XP/CS clinical entity is actually the result of a combined transcription/repair deficiency.</p

    2D omni‐directional wireless power transfer modeling for unmanned aerial vehicles with noncollaborative charging system control

    Get PDF
    Wireless power transfer (WPT) has been extensively studied from various aspects such as far field and near field, operating frequency, coil design, matched capacitance values, misaligned locations of transmitting and receiving coils, distance variance between them, target loads in the specific locations, environment, and operating conditions. This is due to the usefulness of WPT technology in many applications, including the revolutionary method of auto-recharging of unmanned aerial vehicles (UAVs). This paper presents analytical modeling of a WPT-link with two orthogonal transmitting coils arranged to produce an omnidirectional magnetic field suitable for charging a moving rotating load, maximizing energy transfer without any feedback from the receiving end. To achieve a suitable 2D WPT simulation system, as well as an accurate control design, the mutual coupling values in terms of receiver angular rotation are simulated using Ansys software. Power transfer is maximized by using extremum seeking control (ESC), making use of the input power as an objective function with specific parameter values that represent the WPT model to obtain the results. The results shown are those of the input power transmitted by the transmitting-end coils to a load of an orbiting mobile UAV. Based on the simulation results, the controller can achieve maximum power transfer in 100 µs of duration when the speed of the UAV is close to 314 rad/s

    Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice

    Get PDF
    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism

    A 3' --> 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription.

    No full text
    XPB is a subunit of the basal transcription factor TFIIH, which is also involved in nucleotide excision repair (NER) and potentially in cell cycle regulation. A frameshift mutation in the 3'-end of the XPB gene is responsible for a concurrence of two disorders: xeroderma pigmentosum (XP) and Cockayne's syndrome (CS). We have isolated TFIIH from cells derived from a patient (XP11BE) who carries this frameshift mutation (TFIIHmut) and from the mother of this patient (TFIIHwt) to determine the biochemical consequenc

    The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor

    No full text
    A protein kinase activity that phosphorylates the C-terminal domain (CTD) of RNA polymerase II and is associated with the basal transcription-repair factor TFIIH (also called BTF2) resides with MO15, a cyclin-dependent protein kinase that was first found to be involved in cell cycle regulation. Using in vivo and in vitro repair assays, we show that MO15 is important for nucleotide excision repair, most likely through its association with TFIIH, thus providing an unexpected link among three important cellular mechanisms

    The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor

    No full text
    A protein kinase activity that phosphorylates the C-terminal domain (CTD) of RNA polymerase II and is associated with the basal transcription-repair factor TFIIH (also called BTF2) resides with MO15, a cyclin-dependent protein kinase that was first found to be involved in cell cycle regulation. Using in vivo and in vitro repair assays, we show that MO15 is important for nucleotide excision repair, most likely through its association with TFIIH, thus providing an unexpected link among three important cellular mechanisms.</p
    corecore