67 research outputs found

    Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – Effects of peripheral axotomy or hindpaw inflammation

    Get PDF
    Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)1–VGLUT3 transcripts in lumbar 4–5 (L4–5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4–5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III–IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III–IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.Fil: Malet, Mariana. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieytes, C. A.. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Lundgren, K. H.. University of Cincinnati; Estados UnidosFil: Seal, R. P.. University of Pittsburgh; Estados UnidosFil: Tomasella, María Eugenia. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seroogy, K. B.. University of Cincinnati; Estados UnidosFil: Hökfelt, T.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G. F.. University of Pittsburgh; Estados UnidosFil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh; Estados Unido

    The Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium: design, methods, and study population

    Get PDF
    Background: Single birth cohort studies have been the basis for many discoveries about early life risk factors for childhood asthma but are limited in scope by sample size and characteristics of the local environment and population. The Children’s Respiratory and Environmental Workgroup (CREW) was established to integrate multiple established asthma birth cohorts and to investigate asthma phenotypes and associated causal pathways (endotypes), focusing on how they are influenced by interactions between genetics, lifestyle, and environmental exposures during the prenatal period and early childhood. Methods and results: CREW is funded by the NIH Environmental influences on Child Health Outcomes (ECHO) program, and consists of 12 individual cohorts and three additional scientific centers. The CREW study population is diverse in terms of race, ethnicity, geographical distribution, and year of recruitment. We hypothesize that there are phenotypes in childhood asthma that differ based on clinical characteristics and underlying molecular mechanisms. Furthermore, we propose that asthma endotypes and their defining biomarkers can be identified based on personal and early life environmental risk factors. CREW has three phases: 1) to pool and harmonize existing data from each cohort, 2) to collect new data using standardized procedures, and 3) to enroll new families during the prenatal period to supplement and enrich extant data and enable unified systems approaches for identifying asthma phenotypes and endotypes. Conclusions: The overall goal of CREW program is to develop a better understanding of how early life environmental exposures and host factors interact to promote the development of specific asthma endotypes.HHS/NIH [5UG3OD023282]; Columbia University [P01ES09600, R01 ES008977, P30ES09089, R01 ES013163, R827027]; Tucson Children's Respiratory Study (TCRS) [NHLBI 132523]; Infant Immune Study (IIS) [HL-56177]; Childhood Origins of Asthma Study (COAST) [P01 HL070831, U10 HL064305, R01 HL061879]; Wayne County Health, Environment, Allergy and Asthma Longitudinal Study (WHEALS) [R01 AI050681, R56 AI050681, R01 AI061774, R21 AI059415, K01 AI070606, R21 AI069271, R01 HL113010, R21 ES022321, P01 AI089473, R21 AI080066, R01 AI110450, R01 HD082147]; Fund for Henry Ford Health System; Childhood Allergy Study (CAS) [R01 AI024156, R03 HL067427, R01 AI051598]; Blue Cross Foundation Johnson; Fund for Henry Ford Hospital; Microbes, Allergy, Asthma and Pets (MAAP) [P01 AI089473]; Infant Susceptibility to Pulmonary Infections and Asthma following RSV Exposure (INSPIRE) [NIH/NIAID U19 AI 095227, NIH/NCATS UL1 TR 002243, NIH/NIAID K24 AI 077930, NIH/NHLBI R21 HD 087864, NIH/NHLBI X01 HL 134583]; Wisconsin Infant Study Cohort (WISC) [U19 AI104317, NCATS UL1TR000427]; Upper Midwest Agricultural Safety and Health Center (UMASH) [U54 OH010170]; RTI International, Research Triangle Park, North Carolina, USA; NIH [U24OD023382]; Urban Environment and Childhood Asthma Study (URECA) [NO1-AI-25482, HHSN272200900052C, HHSN272201000052I, NCRR/NIH RR00052, M01RR00533, 1UL1RR025771, M01RR00071, 1UL1RR024156, UL1TR001079, 5UL1RR024992-02, NCATS/NIH UL1TR000040]; Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) [R01 ES11170, R01 ES019890]; Epidemiology of Home Allergens and Asthma Study (EHAAS) [R01 AI035786]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Neurotensin Receptor 1 Gene (NTSR1) Polymorphism Is Associated with Working Memory

    Get PDF
    BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators

    African-specific alleles modify risk for asthma at the 17q12-q21 locus in African Americans

    Get PDF
    BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases

    Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    Get PDF
    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses

    Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum

    Get PDF
    Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some insight into the neuroadaptive potentials of the brain when repeatedly exposed to drugs of abuse

    Sociodemographic Differences in COVID-19 Pandemic Experiences Among Families in the United States

    Get PDF
    Few population-based studies in the US collected individual-level data from families during the COVID-19 pandemic.To examine differences in COVID-19 pandemic–related experiences in a large sociodemographically diverse sample of children and caregivers.The Environmental influences on Child Health Outcomes (ECHO) multi-cohort consortium is an ongoing study that brings together 64 individual cohorts with participants (24 757 children and 31 700 caregivers in this study) in all 50 US states and Puerto Rico. Participants who completed the ECHO COVID-19 survey between April 2020 and March 2022 were included in this cross-sectional analysis. Data were analyzed from July 2021 to September 2022.Exposures of interest were caregiver education level, child life stage (infant, preschool, middle childhood, and adolescent), and urban or rural (population <50 000) residence. Dependent variables included COVID-19 infection status and testing; disruptions to school, child care, and health care; financial hardships; and remote work. Outcomes were examined separately in logistic regression models mutually adjusted for exposures of interest and race, ethnicity, US Census division, sex, and survey administration date.Analyses included 14 646 children (mean [SD] age, 7.1 [4.4] years; 7120 [49%] female) and 13 644 caregivers (mean [SD] age, 37.6 [7.2] years; 13 381 [98%] female). Caregivers were racially (3% Asian; 16% Black; 12% multiple race; 63% White) and ethnically (19% Hispanic) diverse and comparable with the US population. Less than high school education (vs master’s degree or more) was associated with more challenges accessing COVID-19 tests (adjusted odds ratio [aOR], 1.88; 95% CI, 1.06-1.58), lower odds of working remotely (aOR, 0.04; 95% CI, 0.03-0.07), and more food access concerns (aOR, 4.14; 95% CI, 3.20-5.36). Compared with other age groups, young children (age 1 to 5 years) were least likely to receive support from schools during school closures, and their caregivers were most likely to have challenges arranging childcare and concerns about work impacts. Rural caregivers were less likely to rank health concerns (aOR, 0.77; 95% CI, 0.69-0.86) and social distancing (aOR, 0.82; 95% CI, 0.73-0.91) as top stressors compared with urban caregivers.Findings in this cohort study of US families highlighted pandemic-related burdens faced by families with lower socioeconomic status and young children. Populations more vulnerable to public health crises should be prioritized in recovery efforts and future planning

    Untargeted metabolomics reveals unconjugated bilirubin and linked pathways in arachidonic acid metabolism and oxidative stress associated with early life recurrent wheeze

    No full text
    Rationale: Metabolomics can aide in understanding asthma pathogenesis by investigating important host-environment interactions in asthma development. This study aimed to identify the metabolome profile associated with infant wheeze as an early-life clinical phenotype associated with later childhood asthma. Methods: A case-control study was conducted using the Environmental influences on Child Health Outcomes (ECHO) program funded Children\u27s Respiratory and Environmental Workgroup (CREW) cohorts. The INSPIRE cohort was used for discovery phase; WISC and COAST cohorts were used for independent replication. Cases and controls were defined as those who wheezed and who did not wheeze during the first year of life respectively. Wheeze was defined by parental report in the prior 12 months for INSPIRE (categorical: 0, 1-3, or episodes) and WISC (yes/no), and by wheeze associated with respiratory infection in the prior 36 months for COAST (yes/no). Untargeted metabolomics was performed on blood collected from participants at age 1-year (INSPIRE, WISC, COAST) and 3-years (COAST) using mass spectrometry platforms. The metabolome and wheeze association was assessed by regressing the log-abundance of 1,057 metabolites (with ≤50% missing data) onto wheeze while adjusting for sex, age, daycare attendance, breastfeeding status and additional latent confounding factors. Inverse probability weighting was used to account for missing data from metabolites with \u3e5% missing data. Results: Among 338 participants in the discovery cohort, 18 annotated and non-annotated plasma metabolites were associated with first-year infant wheeze at a 20% false discovery rate. Citric acid, glyoxylate, and dicarboxylate were the dominant pathways among annotated and wheeze-associated metabolites. However, only unconjugated bilirubin (UCB) exhibited a dose-response relationship with first-year wheeze. Decreased plasma UCB levels were associated with increased wheezing episodes in INSPIRE. In 1-year INSPIRE plasma samples, UCB was 13% lower (β=0.87, 95%CI=0.74-1.02) and 21% lower (β=0.78, 95%CI=0.68-0.91) in those who wheezed 1-3 episodes and 4+ episodes compared to never wheezers, respectively. Results were replicated in WISC 1-year and COAST 3-year plasma samples. In addition, UCB abundance was negatively correlated with arachidonic acid and oxidative stress metabolite abundances. Conclusion: Our results support a protective association between UCB and early-life wheeze. UCB\u27s known antioxidant and anti-inflammatory properties and its relationship with other metabolites suggests the mechanism involves interaction with lipid mediators and oxidative metabolic pathways, which may provide opportunities to develop novel targeted prevention strategies for childhood asthma
    • …
    corecore