253 research outputs found

    Contribution of Selection for Protein Folding Stability in Shaping the Patterns of Polymorphisms in Coding Regions

    Get PDF
    The patterns of polymorphisms in genomes are imprints of the evolutionary forces at play in nature. In particular, polymorphisms have been extensively used to infer the fitness effects of mutations and their dynamics of fixation. However, the role and contribution of molecular biophysics to these observations remain unclear. Here, we couple robust findings from protein biophysics, enzymatic flux theory, the selection against the cytotoxic effects of protein misfolding, and explicit population dynamics simulations in the polyclonal regime. First, we recapitulate results on the dynamics of clonal interference and on the shape of the DFE, thus providing them with a molecular and mechanistic foundation. Second, we predict that if evolution is indeed under the dynamic equilibrium of mutation–selection balance, the fraction of stabilizing and destabilizing mutations is almost equal among single-nucleotide polymorphisms segregating at high allele frequencies. This prediction is proven true for polymorphisms in the human coding region. Overall, our results show how selection for protein folding stability predominantly shapes the patterns of polymorphisms in coding regions

    Contribution of Selection for Protein Folding Stability in Shaping the Patterns of Polymorphisms in Coding Regions

    Get PDF
    The patterns of polymorphisms in genomes are imprints of the evolutionary forces at play in nature. In particular, polymorphisms have been extensively used to infer the fitness effects of mutations and their dynamics of fixation. However, the role and contribution of molecular biophysics to these observations remain unclear. Here, we couple robust findings from protein biophysics, enzymatic flux theory, the selection against the cytotoxic effects of protein misfolding, and explicit population dynamics simulations in the polyclonal regime. First, we recapitulate results on the dynamics of clonal interference and on the shape of the DFE, thus providing them with a molecular and mechanistic foundation. Second, we predict that if evolution is indeed under the dynamic equilibrium of mutation–selection balance, the fraction of stabilizing and destabilizing mutations is almost equal among single-nucleotide polymorphisms segregating at high allele frequencies. This prediction is proven true for polymorphisms in the human coding region. Overall, our results show how selection for protein folding stability predominantly shapes the patterns of polymorphisms in coding regions

    Multi-scale modeling of the structure and dynamics of macromolecules

    Get PDF
    Biology is defined by phenomena that are inherently complex spanning multiple length and time scales. To understand these processes, there is a need for multi-scale approaches that provide a coherent framework for describing and interrogating these phenomena. Here, we employ multiple approaches to investigate specific biological systems. The first system we studied was the cytoplasmic dynein motor, a protein that walks along the microtubule tracks in cells. The major objective in the dynein motors field is to understand its mechanism. Specifically, what is dynein's structure and how does it transduce chemical energy into mechanical work? We proposed a theoretical structural model of the motor and performed normal mode analysis and molecular dynamics on the motor unit structure. These studies hypothesized new structural features in the dynein motor unit and proposed a potential mechanism for energy transduction. The second system we studied was the CFTR channel, which regulates ion transport in the apical membrane of epithelial cells. Mutations in the CFTR protein are the basis of the cystic fibosis disease. One of the primary question is how a single residue deletion (Phe508) lead to ~90% of cystic fibrosis cases. We performed molecular dynamics simulation of the first nucleotide-binding domain of CFTR and showed that the wild type and mutant exhibit a difference in their folding kinetics, in agreement with experiments. These simulations also determined the potential structural origin of this misfolding defect. We also proposed a complete model of the CFTR channel to identify the location of the Phe508 residue in the whole protein. This result is important in understanding another aspect of the ΔF508 defect, which is the misassembly of the whole CFTR protein during its biosynthesis

    The Influence of Selection for Protein Stability on dN/dS Estimations

    Get PDF
    Understanding the relative contributions of various evolutionary processes—purifying selection, neutral drift, and adaptation—is fundamental to evolutionary biology. A common metric to distinguish these processes is the ratio of nonsynonymous to synonymous substitutions (i.e., dN/dS) interpreted from the neutral theory as a null model. However, from biophysical considerations, mutations have non-negligible effects on the biophysical properties of proteins such as folding stability. In this work, we investigated how stability affects the rate of protein evolution in phylogenetic trees by using simulations that combine explicit protein sequences with associated stability changes. We first simulated myoglobin evolution in phylogenetic trees with a biophysically realistic approach that accounts for 3D structural information and estimates of changes in stability upon mutation. We then compared evolutionary rates inferred directly from simulation to those estimated using maximum-likelihood (ML) methods. We found that the dN/dS estimated by ML methods (ωML) is highly predictive of the per gene dN/dS inferred from the simulated phylogenetic trees. This agreement is strong in the regime of high stability where protein evolution is neutral. At low folding stabilities and under mutation-selection balance, we observe deviations from neutrality (per gene dN/dS > 1 and dN/dS 1. Altogether, we show how protein biophysics affects the dN/dS estimations and its subsequent interpretation. These results are important for improving the current approaches for detecting positive selection

    Highly Abundant Proteins Favor More Stable 3D Structures in Yeast

    Get PDF
    AbstractTo understand the variation of protein sequences in nature, we need to reckon with evolutionary constraints that are biophysical, cellular, and ecological. Here, we show that under the global selection against protein misfolding, there exists a scaling among protein folding stability, protein cellular abundance, and effective population size. The specific scaling implies that the several-orders-of-magnitude range of protein abundances in the cell should leave imprints on extant protein structures, a prediction that is supported by our structural analysis of the yeast proteome

    Positively selected sites in cetacean myoglobins contribute to protein stability.

    Get PDF
    Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10–20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2O_2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8–1.2 µM−1µM^{−1}), folding stabilities of cetacean Mbs are ∼2–4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.Chemistry and Chemical Biolog

    Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers

    Get PDF
    Cysteine-rich intestinal protein 1 (CRIP1) has been identified as a novel marker for early detection of cancers. Here we report on the use of phage display in combination with molecular modeling to identify a high-affinity ligand for CRIP1. Panning experiments using a circularized C7C phage library yielded several consensus sequences with modest binding affinities to purified CRIP1. Two sequence motifs, A1 and B5, having the highest affinities for CRIP1, were chosen for further study. With peptide structure information and the NMR structure of CRIP1, the higher-affinity A1 peptide was computationally redesigned, yielding a novel peptide, A1M, whose affinity was predicted to be much improved. Synthesis of the peptide and saturation and competitive binding studies demonstrated approximately a 10–28-fold improvement in the affinity of A1M compared to that of either A1 or B5 peptide. These techniques have broad application to the design of novel ligand peptides
    • …
    corecore