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Abstract

Since divergence ,50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ,10–
20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and
prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical
oxygenation constants of ,0.8–1.2 mM21), folding stabilities of cetacean Mbs are ,2–4 kcal/mol higher than for terrestrial
Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution of cetacean
Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in
cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a
conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting
that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event
leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites
that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers,
where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main
positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical
hydrogen bonds.
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Introduction

Upon adapting to the aquatic environment, marine mammals

acquired features that improved their diving skills such as increased

blood volume and hematocrit, efficient modes of locomotion

(stroke-and-glide swimming) [1,2] and ,10–20 times higher

myoglobin (Mb) concentration (CMb) in the skeletal muscles

contributing substantially to total body oxygen stores and aerobic

dive limits [3,4]. Using an integrated Krogh model of the muscle

cell, models of convective oxygen transport and aerobic dive limit

(ADL), and thermodynamics of O2-binding, we recently showed

that wild-type (WT) Mb is more efficient than mutants under

severely hypoxic conditions, whereas low-affinity mutants are in fact

better transporters at intermediate oxygen pressure [5]. Moreover,

while many sites do not affect O2-binding, conserved WT Mb traits

are critical for prolonging the ADL of the animals: As the extreme

example, mutating the distal His-64 residue can reduce the ADL by

up to 14 minutes under routine dive conditions, and CMb almost

linearly extends the ADL ceteris paribus, explaining the extreme

increase in CMb occurring in the cetaceans [6].

Despite the intense research into the structure, function and

physiological role of Mb [5–9], the evolution of Mb is not well

understood [7]. Several studies have suggested that Mb is under a

selection pressure for its function and structural integrity [7,10–

11]. Based on amino acid chemical properties and comparative

studies of known Mb sequences, some form of selection has been

suggested in the evolution of mammalian Mb to favor retention of

the conformational structure [10]. Moreover, it has been shown

that variable sites in cetacean Mbs are fewer in number but more

prone to change than primate Mbs suggesting a probable shift in

the function of Mb in cetaceans [11]. However, it is still unclear

what drives Mb evolution, as are the specific sites potentially under

positive selection and the changes in phenotype they might

introduce.

Mb is a relatively conserved protein in all mammals [12]. In a

sequence alignment of Sperm whale, Pig, Bovine, Dog, Sheep,

Horse and Human Mb, 107 out of 153 residues, including those

essential for O2 binding, are identical (See Text S1). Also, Mb

oxygen affinity is nearly the same (KO2<0.8–1.2 mM21) for

mammalian species. This observation is probably due to the

‘‘reversible binding’’ requirement of molecular O2 to Mb [13] at a

given oxygen pressure, PO2, which strongly constrains oxygen

binding thermodynamics across mammalian cells [5]. Despite

similar KO2, another protein phenotype, the folding stability (i.e.

the free energy of folding the protein, DGfolding = Gfolded2Gunfolded), is

systematically higher in marine mammals compared to their

terrestrial counterparts [14]. In a study of mammalian apoMbs,

sperm whale apoMb was found to be ,2.5 kcal/mol more stable

than horse apoMb [15]. The stability difference can reach up to

,4.5 kcal/mol when goose-beaked whale is compared to pig [16].
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In this work, using current Bayesian methods to detect selection

and a physical force field to compute the stability of single-point

mutations, we first identify specific residues under positive

selection in the cetacean clade and find that the evolution rate is

substantially higher in cetacean Mbs compared to terrestrials.

Second, we find that mutations in positively selected sites overall

contribute to maintaining stability. Third, using ancestral state

reconstruction, we demonstrate that most stabilization occurred

during the divergence of cetaceans from the terrestrials. Further-

more, we observe a correlation between Mb folding stability and

its abundance across species, further confirming that Mb

stabilization is selected for in proportion to protein abundance.

Thus, the higher Mb abundance required by speciation of

cetacean seem to be accompanied by a larger selection pressure

to preserve stability, possibly to reduce the copy number of

misfolded Mb in the cell, which is a suggested universal selection

pressure for highly expressed proteins [17].

Results/Discussion

Phylogenetics
The available mammalian Mb sequences were divided into two

datasets: 33 nucleotide sequences of mammalian Mbs were used to

construct a phylogenetic tree used for evolutionary analysis with

codon models (Figure 1A). To infer ancestral states with highest

possible accuracy, a larger tree was also constructed from the

substantially larger number (82) of available amino acid sequences of

mammalian Mbs (Figure 1B). For both phylogenies, Zebra finch

was the outgroup, cetaceans were divided into two major

suborders, Mysticeti (minke whale and sei whale) and Odontoceti

(sperm whales, beaked whales, dolphins, and porpoises), and all

the branching patterns followed the known mammalian organism

tree with order-specific patterns in primates, rodents, carnivore,

cetardiodactylans, and cetaceans [18–26]. The accession numbers

of all sequences used in this work, as well as full sequences of

relevant ancestors are shown in Text S1.

The sequence of ancestral cetacean Mb was inferred from the

available mammalian Mb sequences within all orders using the

consensus mammalian species tree. Mb sequences from rodents

and primates have minor effects on the most probable inferred

ancestral sequence of cetacean Mb (see Text S1 for details).

Detection of positive selection
To test for positive selection, we used codon-based models of

nucleotide substitutions to estimate the rate of nonsynonymous to

synonymous mutations, dN/dS, across different sites and branches

of the mammalian phylogeny [27]. Also, all mutations were

studied using the FoldX force field [28–30] to investigate whether

the sites under selection in some way contribute to the stability

phenotype of the Mbs (See Methods section for details).

Table 1 presents a comparison of the nested M0 (i.e. one dN/dS

for all lineages) and FR (i.e. one dN/dS for each branch) models for

both terrestrial and marine mammals. In the cetacean clade, the

likelihood ratio test (LRT) gives a non-significant result of

relatively similar v ratios across the species. We also constrained

v to be the same in the whole cetacean clade (v1) and different for

the rest of the mammals (v0). LRT is significant when it is

compared with the one-ratio test with P-value,10216. For ,26%

of sites in Mb, v1 = 0.43 and v0 = 0.19, testifying to a significantly

higher evolution rate in cetaceans. As a further support, a higher

rate of evolution was also observed in the whole-gene dN/dS

comparison of cetaceans (Table 2) and primates (Table 3). The

null hypothesis of two sets of dN/dS in primate and cetacean Mbs

being similar is strongly rejected with the P-value of ,1.33610216

using the two-sample t-test.

The higher rate of evolution in the cetacean clade could suggest

accelerated evolution driven by positive selection of specific sites.

To test this, we compared three site pair-models as M1–M2, M7–

M8 and M8fix-M8 to identify sites under positive selection, as

presented in Table 1 (see Methods section for details). From

Table 1, the most stringent test (M8 vs. M8fix) indicated that seven

sites (5, 22, 35, 51, 66, 121, and 129) are under positive selection

with overall probabilities greater than 0.5 using the Bayes

empirical Bayes (BEB) test [31]. Residue 21 was also detected to

have a substantially high dN/dS, but its rate was not significantly

greater than 1 and thus this residue was not detected by the BEB

test. All eight sites are shown in Figure 2 with their posterior BEB

probabilities using the M8 model, and with a mapping of sites onto

the structure of sperm-whale Mb [32].

Table 1 also shows the results of a branch-site test of positive

selection, model A, compared with M1a and the null model-A.

Evolution rate (i.e. v) was left to vary (model A) or fixed to 1 (null-

model A) on the foreground tree with the marked branch leading

to cetaceans (Figure 1A). The LRT was in this case not significant

when model A was compared with its null model, but significant

compared to model M1a.

Ancestral state reconstruction and the evolution of
stability

To track the mutational pathways across different lineages of

cetaceans, we constructed ancestral sequences as shown in

Figure 3. Ancestral states were inferred using the large species

tree in Figure 1B constructed from 82 Mb amino acid sequences,

applying the Dayhoff substitution matrix allowing for among-site-

rate-variation as explained in the Methods section. Overall

probability of inference was 1 except in the sites 1, 13 and 28

where it is 0.5–0.9. In all of these sites, the alternative preferred

amino acid is the initial mutated amino acid. Overall, our results

did not encounter the problem of combinatorial ancestral

characters that typically lead to non-unique reconstruction of

ancestral sequences [33].

Using the FoldX algorithm, we computed the DDG associated

with the mutations in each branch of phylogeny as is shown in

Figure 3. The overall stabilization or destabilization of each

branch is depicted in red or blue, and the branch height is

proportional to the absolute computed DDG value of that specific

branch. The overall stability increases in seven branches

distributed from 20.3 to 25.1 kcal/mol.

Upon divergence of cetaceans from the rest of mammals, the

most substantial increase of ,5.1 kcal/mol was gained by

Author Summary

In this work, we identify positive selection in cetacean
myoglobins and an early, significant divergence event.
While O2-binding is nearly unchanged, positive selection
acts to introduce and later maintain stability. Stability
correlates with abundance across the species, supporting
that selection for increased stability concurred with the
known 10–20 fold increase in myoglobin abundance of
cetaceans relative to terrestrial mammals, which itself
resulted from speciation towards longer dive lengths of
the animals. We suggest that this selection acted to keep
constant the otherwise increasing number of unfolded Mb.
Altogether, this work for the first time links protein
phenotype (stability and abundance) in a specific, real
protein to organism-level evolution and fitness of mam-
mals.

Positively Selected Sites in Cetacean Myoglobins
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mutations G15A, E27D, V28I, V101I, K118R, and G129A. From

Table 1, the total v is not significantly greater than 1, but this may

be an unrealistically strict criterion for a small, highly constrained

protein such as Mb, as evolutionary rate is strongly correlated to

protein size due to the fraction of near-neutral sites increasing with

size. Instead, LRT is significant when the branch-site test for

positive selection (model A) is compared with the nearly neutral

model (M1a), which indicates a higher v in this first branch

leading to cetaceans. In addition to positive selection under a new

selection pressure (to be explained later, selection for a higher CMb

proportional to ADL, and additionally for folding stability), this

might also be caused by relaxation of constraints (loss of selection

pressure) [34]. Since the O2-binding affinity of Mb is nearly the

same in all mammalian species (KO2 at 298 K and pH 7 of ,0.8–

1.2 mM21), we conclude that the higher v along this ancestral

branch is consistent with positive selection under another arising

selection pressure. As presented in Table 1, selection is further

supported by the identified amino acid sites in the BEB test having

high probabilities along this specific branch, and by the massive

increase in the stability phenotype of ,5 kcal/mol occurring

during this branching. Altogether, these results suggest that the

common ancestor of whales already possessed the new stability

phenotype that will later be shown to imply that this ancestor was

most likely a deep-diver, although our terminal nodes contain both

terrestrial, shallow-, and deep-diving mammals.

After this early divergence that presumably established the

majority of the new Mb stability, throughout the cetacean lineages,

folding stability is seen to be maintained by fixation of several

stabilizing mutations. From Figure 3A, the key mutations

preserving this tendency are G5A, V13I, V21I, V21L, E27D,

G35S, S35H, N66V, N66H, N66I, G74A, D83E, K118R, G121S,

and G129A mutations. Eight of these mutations occur in the five

sites 5, 35, 66, 121, and 129 which were detected by to be under

positive selection. Thus, the insight from pure sequence-based

maximum likelihood methods, amino acid substitution probabil-

ities, and changes in biophysical stability as detected by structure-

based approaches converge to the same interpretation of positive

selection to obtain and maintain a higher Mb stability for the

whales. As a further support for the link, G5A, G35S, and G129A

mutations have been observed in more stable Mbs in comparative

studies [14].

Figure 3B shows dN/dS values for the variable sites in the

cetacean clade versus the inferred DDG of the mutations. Four of

the positively selected residues (i.e. residues 5, 35, 66, and 121)

show an effect on folding stability .0.5 kcal/mol, with 5 and 66

being most significant, both towards stabilization (,0.7 and

Figure 1. The mammalian phylogenetic tree constructed from A) nucleotide sequences and B) amino acid sequences. The smaller tree
A was used in maximum likelihood tests for adaptive evolution while the tree B was explicitly used for ancestral state reconstruction. The best
evolutionary model with the lowest BIC score was Tamura-Nei92 with transition/transversion bias, R = 1.66 in A and Dayhoff in B. Both models allow
among-site-rate-variation sampled from a discrete gamma distribution with four categories and shape parameters 0.33 and 0.46 for nucleotide and
amino acid sequences respectively. The phylogeny A is divided into two groups of cetaceans (shown in red) and terrestrial mammals (shown in blue)
to test the non-uniformity of molecular clock across different lineages and sites. The branch leading to cetaceans is shown with a black circle in
Figure 1A.
doi:10.1371/journal.pcbi.1002929.g001

Positively Selected Sites in Cetacean Myoglobins
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Table 1. Log likelihood values and parameter estimates of the site models, and branch-site models.

Clades Model ln L Estimates of parameters 2Dl P-value

Positively selected
sites (BEB:
P(v.1).0.50)a

Cetacea M0 (one ratio) 21241.82 v0 = 0.1980

Free ratio 21236.39 See Text S1 (M0 vs. Free ratio)
10.86

0.69 -

Site models

M1a 21251.18 p0 = 0.83845, p1 = 0.16155, v0 = 0.02688,
v1 = 1

-

M2a 21248.47 p0 = 0.84199, p1 = 0.14878, p2 = 0.00922,
v0 = 0.03212, v1 = 1.00000, v2 = 4.91963

(M1a vs M2a) 5.42 0.06 5, 22, 35, 51, 66, 121, 129

M7 21251.39 p = 0.06085 q = 0.29213 -

M8 21247.47 p0 = 0.98777, p = 0.11682, q = 0.66881,
p1 = 0.01223, v= 4.33010

(M7 vs. M8) 7.84 0.019 5, 22, 35, 51, 66, 121, 129

M8fix 21251.06 p0 = 0.86441, p = 0.11615, q = 2.08136,
p1 = 0.13559, v= 1.00000

(M8fix vs M8) 7.18 7.3761023 -

Terrestrial
mammals

M0 (one ratio) 24499.91 v0 = 0.1062 -

Free ratio 24469.29 See Text S1 (M0 vs. Free
ratio) 61.24

0.065 -

Mammals M0 (one ratio) 24926.63 v0 = 0.08 -

Free ratio 24872.64 See Text S1 (M0 vs. Free
ratio) 107.98

4.861024 -

Site models

M1a 24646.77 p0 = 0.88207, p1 = 0.11793, v0 = 0.05590,
v1 = 1

-

Clade model
(cetaceans)

24594.72 p0 = 0.68694, p1 = 0.04973,p2 = 0.26333,
branch type 0: v0 = 0.02043,v1 = 1.00000,
v2 = 0.19272, branch type 1: v0 = 0.02043,
v1 = 1.00000, v2 = 0.43113

(M1a vs. Clade
Model) 104.1

,10216 -

Branch-site models

Model A 24643.53 p0 = 0.74119, p1 = 0.09943,
p2 = 0.14053,p3 = 0.01885, v0 = 0.05388,
v1 = 1, v2 = 1

(M1a vs Model A)
486

,10216 -

Null model A (v= 1) 24643.53 p0 = 0.62272, p1 = 0.08364, p2 = 0.25887,
p3 = 0.03477, v0 = 0.05392, v1 = 1, v2 = 1

(model A vs Null
model A) 2

1 15, 27, 28, 101, 118, 140

a: P(v.1).0.95 is shown in bold.
doi:10.1371/journal.pcbi.1002929.t001

Table 2. The pair-wise evolution rate (i.e. dN/dS) among cetacean Mbs using the maximum likelihood approach described in
Methods section.

L_b_whale

S_whale 0.2761

P_s_whale 0.2259 0.2122

M_whale 0.2647 0.2741 0.2735

M_h_whale 0.2433 0.1950 0.1890 0.1754

P_b_whale 0.3057 0.2324 0.2636 0.1566 0.2386

Sei_whale 0.3469 0.2538 0.2832 0.1262 0.2173 0.001

S_b_whale 0.1079 0.2641 0.2166 0.2796 0.2723 0.3261 0.3705

Dolphin 0.2805 0.2536 0.2374 0.2096 0.3328 0.2865 0.2592 0.3176

L_b_whale S_whale P_s_whale M_whale M_h_whale P_b_whale Sei_whale S_b_whale Dolphin

doi:10.1371/journal.pcbi.1002929.t002

Positively Selected Sites in Cetacean Myoglobins
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Table 3. The pair-wise evolution rate (i.e. dN/dS) among primate Mbs using the maximum likelihood approach described in
Methods section.

Human

Chimpanzee 0.0312

Macaque 0.0635 0.0860

Gibbon 0.0532 0.0774 0.0738

Marmoset 0.1272 0.1480 0.0647 0.1101

Gorilla 0.0435 0.0941 0.0949 0.1053 0.1666

Lemur 0.0487 0.0514 0.0566 0.0511 0.0537 0.0513

Galago 0.0964 0.0900 0.0742 0.1138 0.0753 0.0911 0.0905

Human Chimpanzee Macaque Gibbon Marmoset Gorilla Lemur Galago

doi:10.1371/journal.pcbi.1002929.t003

Figure 2. The Bayes empirical Bayes predictions for v values for each site in cetacean Mb. A) For each residue p(v,1), p(v= 1) and
p(v.1) are shown in cyan, green and red respectively. Residues 5, 21, 22, 35, 51, 66, 121, and 129 have probabilities (v.1).0.5 with ,v. = 5.86
from the M8 model using the ML-estimated branch lengths under the M0 model. B) Crystal structure of sperm whale Mb taken from the protein data
bank (ID = 1U7S) [32] with residues color coded by p(v). The figure was created using PyMOL (http://www.pymol.org).
doi:10.1371/journal.pcbi.1002929.g002

Positively Selected Sites in Cetacean Myoglobins
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,1.0 kcal/mol). Although the G129A mutation, which is fixated

in the first branch leading to cetaceans (see Figure 3), is stabilizing

(i.e. DDG = 20.69 kcal/mol), it undergoes three inversions from

Ala to Gly in the branches leading to sperm whales, beaked whales

and the suborder of Delphinidae, which makes it net destabilizing

when summing over occurrences, although this is less significant

and could reflect a partial relaxation of stability selection.

Insignificant destabilization is also observed in the residues 22

and 51 which will be discussed later.

Figure 3B and 3C show an interesting feature of the

evolutionary dynamics of protein stability. As was recently shown

by relating protein stability (i.e. DG) and evolution rate (i.e. dN/dS),

proteins may evolve to a stability regime having a detailed balance

between stabilizing and destabilizing mutations [35]. Without the

stability effects of sites detected to be under positive selection,

mutations are distributed nearly symmetrically in the DDG vs. dN/

dS scatter plot with an average mutation having DDG = 0.1 kcal/

mol. The average DDG of an arising mutation in Mb is estimated

Figure 3. A) The Phylogenetic tree of cetacean Mb upon the divergence from terrestrial counterparts. Ancestral states were inferred
using the maximum likelihood (ML) approach described in Methods [59]. Amino acid changes in each branch are shown with the respective changes
in free energy of folding, DDG in kcal/mol calculated from the FoldX force field [28]. Stabilization and destabilization is presented by red and blue
colors respectively across the phylogeny, with branch height proportional to |DDG| of that specific branch. B) The average v= dN/dS for the variable
sites in A from the M8 model is plotted versus the average DDG of mutations in these sites. C) The distribution of mutational effects in Mb from [36] is
shown with the solid black line where arrows show the average DDG for an average mutation in Mb (,1.22 kcal/mol), in the cetacean clade among
not-positively selected mutations (,0.06 kcal/mol) and, among the positively selected residues (,20.26 kcal/mol). The probability of stabilization
caused by positive selection is ,0.8.
doi:10.1371/journal.pcbi.1002929.g003

Positively Selected Sites in Cetacean Myoglobins
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to be ,1.2 kcal/mol [36]. Together, these values suggest a

balance between stabilizing and destabilizing mutations in the late

branches of the cetacean clade.

Positive selection however shifts this balance by fixating

stabilizing mutations such as G5A, G35S, S35H, N66V, N66H,

N66I, G121S and G129A in the cetacean Mbs, providing a further

stabilization of 21.7 kcal/mol for the whole clade and 24.4 kcal/

mol when the branches leading to harbor porpoise and common

minke whale are removed. These animals have DG similar to that

of terrestrials both from experimental mutagenesis and stability

measurements and from the FoldX computations. Also, they are

shallow divers, consistent with their reduced CMb (i.e. reduced need

for a long ADL [6]), which might suggest that they are under less

selection for stability (vide infra). Thus, after divergence towards the

common deep-diving ancestor, positive selection still acted to

maintain and purify Mb stability except in the mentioned case of

apparent phenotype relaxation. The role of positive selection is

also reflected in the probability of stabilization (i.e. DDG,0 kcal/

mol) conditional of positive selection, pr (DDG,0 | v.1), using

the Bayes rule [37], being ,0.80 (see Text S1 for details).

Moreover, the average DDG of positively selected residues is

significantly less than that of non-positively selected residues with

P-values of 0.0382 and 0.0456 using the two-sample t-test

assuming unequal and equal variances in the two datasets,

respectively.

Among the seven positively selected sites, four sites display a

mutation from Gly to Ala (1, 5, 121, and 129). Gly is known as a

strong helix breaker and thus its replacement with Ala will

strengthen the helix specifically in soluble proteins [38]. As is

shown in Figure 4A and 4B, the G5A mutation is preferred in both

Ziphidae (beaked whales) and Mysticeti (baleen whales) suborders

of phylogeny. In position 66, a hydrophobic amino acid is

stabilizing, confirmed by experimental measurements and most

likely due to the hydrophobic effect (i.e. this mutation destabilizes

the solvent exposed site in the unfolded protein relative to the

folded protein). From Figure 4C, both Ser and His in position 35

can make a hydrogen bond to Arg31. The G35S/G35H mutations

are selected in the two more stable physeter species (pygmy sperm

whale and dwarf sperm whale) as is shown in Figure 4D. In

position 51 which is a surface residue, a Thr to Ser mutation is

preferred in two branches leading to beaked whales and to the

more stable sperm whales. Both Thr and Ser have similar

chemical properties and may form a hydrogen bond with aNH of

residue 54 [14].

Abundance and folding stability of cetacean Mbs
correlate: Implications for fitness

So far we have shown that the systematic increase in folding

stabilities of cetacean Mbs, partly known from experimental data

and further elaborated by the FoldX calculations, is caused by

positive selection in this clade of mammalian phylogeny. It is thus

important to investigate the biological origin of the selection

pressure driving this stabilization. Olson et al. has made the

rationale for this increased stability as due to the sustained

anaerobic and acidic conditions in the skeletal muscle of marine

mammals [14,16]. Since whales and seals experience prolonged

dives, their Mbs have been suggested to be under selective pressure

for increased resistance to unfolding during acidosis [14,16].

Figure 4. A) Ala at position 5 shown in the crystal structure of sperm whale Mb as preferred over Gly in two lineages within the
cetacean phylogeny B) leading to Baleen whales and Beaked whales. C) Ser or His at position 35 is preferred over Gly for their ability to
make a hydrogen bond with a-CO of Arg31 in the sperm whale clade of cetacean phylogeny D.
doi:10.1371/journal.pcbi.1002929.g004
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This hypothesis is in contrast with several observations. First,

marine mammals generally stay under aerobic metabolism due to

the high cost of recovery after switch to anaerobic conditions [39].

The longest dives recorded for large whales such as blue and fin

whales are much shorter than predicted the dive limits under

aerobic conditions (ADL) [40]. In similar studies of sperm whales

and seals, almost all the dives were found to not greatly exceed

ADL [41,42]. Second, the pH-fall in muscle and blood of seals

after the long dives is reported to be less than one unit from its

physiological value (,7.5) which is too small to initiate unfolding

[43]. These observations show that a switch to anaerobic

metabolism and sustained acidosis in the muscle is less relevant

for the diving patterns of marine mammals as observed in the wild

[42].

As seen in Figure 5, upon divergence of marine mammals, a

,10–20 fold increase in Mb concentration (CMb) is experimentally

observed, which has been shown to be critical for O2 storage and

diving capacity [6]. Moreover, the stability of Mb is also increased:

For Pig, Horse, Sheep, Human, Bovine and Dog, DG of apoMb has

been reported to be 24.4, 24.8, 24.9, 25.7, 25.8 and 26.3 kcal/

mol [14], increasing to 25.1, 27.4, 27.5, 27.8, 28.4 and 28.7 in

Dwarf sperm whale (K. simus), Pygmy sperm whale (K. breviceps),

Sperm whale (P. catadon), Goose beak whale (Z. cavirostris), Dolphin

(Delphinus delphis), and Minke whale (B. acutorostrata). The stability of

holoMb is ,2.7 kcal/mol higher than that of apoMb and this

difference is assumed to be a constant, since residues in the heme

pocket are conserved across all cetaceans [12,14]. The average

stability of holoMb is thus ,27 to 28 kcal/mol for terrestrial

mammals and ,210 to 211 kcal/mol for cetaceans. More

importantly, as shown in Figure 5, stability is highly correlated

with the species-specific CMb with a correlation coefficient r= 0.88

at the significance level ,0.01. This correlation cannot be explained

by adaptation to acidic conditions, because acidic robustness would

not depend on protein abundance.

The DG2CMb correlation is sensitive to various factors: First,

CMb varies somewhat among different muscle types in mammals.

Swimming muscles in dolphins contains ,82–86% of total Mb but

constitute ,75–80% of total muscle mass, compared to non-

swimming muscles [44]. In humans, it is generally known that slow

oxidative type I muscles contain more Mb than fast twitch type II

muscles [45]. Second, Mb concentration is also age-dependent.

Several studies of marine mammals suggest that skeletal muscle of

pups have approximately 30% less Mb compared to adults

[46,47]. Despite these individual and tissue-wise variations in Mb

expression, CMb for marine mammals is still generally ,10 fold

higher than for terrestrial mammals [48].

Evolution against burden of protein misfolding as CMb

increases
The correlation between protein folding stability and its

expression level in the cell was recently proposed to be a

consequence of protein misfolding prevention [17]. This hypoth-

esis could explain the universal, strong anti-correlation between

protein expression level and evolution rate (ER) in proteins, known

as ER anti-correlation, i.e. highly expressed proteins are under

stronger selection for stability to reduce the copy number of

misfolded proteins [49]. While there may be many other

explanations for the ER anti-correlation (i.e. the fitness impact,

and hence conservation, of a protein would be proportional to its

abundance regardless of the property selected for), the observation

of a correlation between protein folding stability in Mb, as one of

the most highly expressed mammalian proteins, and its abundance

level in different organisms is the first, specific indication that

stability as a protein phenotype may be the main property under

selection in a real mammalian protein.

We propose that selection against unfolded protein is the cause

of both the observed increased evolution rate (Table 1 and 2/3)

and the higher stability of the cetacean Mbs. The increased

evolution rate of cetacean Mbs with higher expression level seems

at first to be in contrast with the average tendency of highly

abundant proteins to evolve slowly [50,51]. The explanation for

this is most likely that highly expressed proteins that evolve slowly

are normally close to equilibrium at their fitness optimum and

under stronger selection for conserving stabilizing traits, whereas

Figure 5. Divergence of cetaceans and the increase in Mb concentration by ,10–20 fold. The experimental folding stability of apoMb is
added to the difference in stability of holo and apoMb reported for horse heart Mb (2.7 kcal/mol). Stability is highly correlated with Mb concentration
with correlation coefficient r= 0.88 and p-value = 0.000331. The Mb concentration has been measured in adorsi and in bpsaos muscle types. Data are
taken from 1: [57], 2: [75], 3: [44], 4: [7] and 5: [76]. All the folding stabilities are taken from [14].
doi:10.1371/journal.pcbi.1002929.g005
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in the present specific evolutionary history, the increased

evolutionary rate results from a divergence event where the higher

abundance is established together with enhanced stability. This is

fully consistent with our observed CMb-stability correlation using

available experimental data, with the dive depths of the respective

animals, and with the observation of highest evolutionary rate

during the first branching event where stability (and presumably

CMb) increased the most.

The present results thus also demonstrate how the evolution

rate, dN/dS, of a single protein depends on a biophysical property

such as in this case stability. Upon divergence to a new niche

(deep-diving), the rate increased due to positive selection of new

stabilizing mutations, but it is very conceivable that once the

optimal stability has been obtained, fixation of new traits will also

occur in cetacean Mbs, at least in so far as speciation is complete,

which would reduce the rate of evolution as is partly seen in the

latter part of the cetacean clade vs. the earlier part. Thus, our

results are consistent with the general abundance-evolutionary rate

anticorrelation but also suggest that the relation breaks down when

highly expressed proteins undergo positive selection towards

establishing new traits, leading to a speciation event of both

higher evolutionary rate and higher abundance.

In this interpretation, upon the divergence of cetaceans from

their terrestrial counterparts, the speciation towards deep divers

quickly led to selection for higher CMb, which for deep divers is

almost proportional to ADL and by inference, fitness [6]. This

early speciation led to an increased selection pressure acting to

increase Mb stability in order to minimize the burden of misfolded

Mbs within the cell. With a typical 10-fold increase in CMb, an

unchanged stability would increase the burden of unfolded Mb by

10-fold in cetaceans, but an average stability increase of ,2 kcal/

mol would change the folding equilibrium constant to keep the

total copy number of unfolded Mb almost constant across lineages,

implying that the burden would be checked in this way.

Evolution of sites with no significant effect on stability
Among the significantly stabilizing mutations, 5, 35, and 66

were detected to be under positive selection with high posterior

probabilities (p (v.1),0.80–0.95). The remaining detected sites

under positive selection were not significantly affecting stability as

seen in Figure 3B. However, they might affect the protein in

various other ways that also relate to the increased need for Mb

and the adaptation of Mb-enriched deep-divers such as increased

signalling requirements or structure preservation beyond thermo-

dynamic stability, e.g. kinetic denucleation/unfolding prevention.

Notably, sites 22 and 51 are predicted to be destabilizing by

FoldX in an agreement with previous comparative mutagenesis

experiments [16]. Since both these surface residues are substituted

for Ser, they may be involved in post translational modifications

such as phosphorylation, although a physiological role phosphor-

ylation is unknown [52]. In fact, both residues 22 and 51 are

predicted to be phosphorylation sites in whale Mbs using the

NetPhos 2.0 server (available at http://www.cbs.dtu.dk/services/

NetPhos/) with high scores of 0.82 and 0.97, respectively (See

Text S1). Moreover, residue 117 is also detected here as a

phosphorylation site as proposed relevant for Beluga whale

(Delphinapterus leucas) Mb [52]. This observation is consistent with

previous studies in enzymes that gain-of-function mutations are on

average destabilizing [53], but overall, positive selection still

contributes to stability despite these marginally destabilizing sites.

Concluding remarks
This work suggests that in an important real case of protein

evolution, folding stability could be selected for in response to

speciation in a new habitat: Our results suggest that the evolution

of cetacean Mbs concurred with a divergence of one phenotype –

stability – while oxygenation properties remained similar. Folding

stability increased significantly (,5.1 kcal/mol) due to the fixation

of G15A, E27D, V28I, V101I, K118R, and G129A mutations.

We have explained how and why increased Mb stability correlates

with increased protein abundance during this evolutionary event,

which probably involved substantial competition and speciation as

niches were established in the diving regime.

The early, substantial increase in folding stability was accom-

panied by a significantly higher dN/dS in the first branch leading to

cetaceans as judged from the comparison between the nearly

neutral model (M1a) and the branch-site model of positive

selection on this specific branch. This initial gain of folding

stability was then later maintained through the fixation of G5A,

V13I, V21L, V21I, V28I, G35S, S35H, N66V, N66I, G74A,

V101I, K118R, G121A, and G129A mutations which compensate

the deleterious effects of various destabilizing mutations possibly

having marginally beneficial fitness effects relating to e.g.

regulation. The full picture of these other functionalities would

be a relevant focus area in future work.

Later in the clade, we have observed relaxation of the selection

for stability. Notably, the common minke whale (Balaenopetra

acutorostrata) and harbor porpoise (Phocoenoides phocoena) display DG

and CMb similar to terrestrial mammals with 28.4 and 27.8 kcal/

mol and 0.37 and 0.40 gram per 100 g muscle, respectively. Given

the linear effect of CMb on ADL and by inference the action radius

and fitness of the marine mammals [3,6], This observation might

be explained by the reduced oxygen consumption demands of

both species during diving: Common minke whale is the smallest

of the baleen whales with short dive times of ,5–10 minutes [54]

compared to sperm whales with an average dive time of ,45 min

[55]. Porpoises are also shallow divers (,50 m) with dive times less

than two minutes [56]. Therefore, the selective pressure towards

more (and more stable) Mb seems to be relaxed in these species if

our mechanism is correct, explaining why shallow divers such as

porpoises have reverted to less stable Mb. However, across the

species, other factors, notably body mass reducing metabolic rate

of the animal, also contribute to the total ADL [57], and future

data on dive capacities vs. Mb stability would help to clarify the

validity of the inferred mechanism.

While evolution is often interpreted as selection for new protein

functionality [58], the evolution of cetacean Mbs described in this

paper provides the first real example of protein stability being

selected for as a consequence of protein abundance, using as

control the terrestrials that have 10-fold less Mb. The mechanism

by which evolution still acts on the cetacean Mbs, in addition to

conservation of the heme pocket due to the reversible binding

requirement [13], appears to be one of reducing the animal’s

burden of the more unfolded Mb copies in the muscle cells by

increasing the selection for stability of the highly expressed protein.

We suggest that this is the main explanation for the observed

accelerated evolution in the cetacean clade.

Methods

Phylogenetic analysis and ancestral state reconstruction
The mammalian species tree was analyzed with the MEGA5

package [59] to select the best nucleotide/protein model with the

lowest BIC scores, which was the Tamura-Nei92 and Dayhoff model

allowing among-site-rate-variation (ASRV) sampled from a discrete

gamma distribution with four categories (See Text S1 for details)

[60–62]. To infer the ancestral sequences of the cetacean clade,

branch lengths were first estimated using the Dayhoff model with
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ASRV, and the Bayesian posterior probabilities were calculated for

each possible ancestral state for each node [63]. To explore the

ancestral sequences inferred, we then used the maximum likelihood

method [64] instead of the maximum parsimony (MP) approach due

to the limitations of MP in dealing with branch lengths and possible

uncertainties in the phylogeny [65].

New Mbs of any member of Ancodonta such as Hippos

(Hippopotamus), Camelidae and more species from Cetardiodactyla

order such as Alpaca (Vicugna vicugna) could possibly resolve better

the branch leading to cetaceans and thus provide a finer tree for

investigating the episodic nature of dN/dS with respect to protein

stability.

Estimating evolution rate and detecting adaptive
evolution

The pair-wise comparisons of Mb sequences of cetaceans and

primates shown in Table 1 were estimated by the Maximum

likelihood approach with codon models in CODEML program

implemented in the PAML suite [66]. The equilibrium codon

frequencies were estimated from the products of the average observed

nucleotide frequencies in the three codon positions (F3X4 model).

To detect adaptive evolution, three codon-based models of

nucleotide substitutions for the data [67] with the maximum

likelihood inference were employed, first via ‘‘branch models’’ that

allow the v ratio (i.e. dN/dS) to vary among branches in the

phylogeny [68]; M0 (one v ratio for all lineages) and FR (one v
ratio for each branch), and second, via ‘‘site models’’ that allow the

v ratio to vary among codon sites within the sequence [69]. We

used five different models referred to as M1 (nearly neutral), M2

(positive selection), M7 (beta), M8 (beta and v), and M8fix (M8

with v fixed at 1) [31]. The tree branch lengths were first

estimated with the M0 model and were used in the more advanced

codon models. We also used the site-models by estimating the

branch lengths rather than taking their ML estimated values from

the M0 model. With both approaches, the same sites were

detected to be under positive selection with significant results in

LRTs (see Table S3 in Text S1 for details). Positive selection in the

specified residues was also robust to the use of gene tree instead of

the organism tree (see Table S4 in Text S1 for details).

Synonymous estimates in both marine and terrestrial mammals

were less than 1.5 with the exception of one branch having

v= 1.56, and could thus be considered reliable. We ran the

CODEML program several times with different initial values to

prevent local optima in the Bayesian identification.

To compare the fit of nested models, classified as null and

alternative models, the Likelihood Ratio Tests (LRT) was used

[70]. Within a LRT test, twice the log-likelihood difference

between two nested models has a chi-square distribution with a

number of degrees of freedom equal to the free-parameter

differences [71]. Different nested pairs of models were compared

using the LRT such as branch models M0 versus FR, and Site

models M1 versus M2, M7 versus M8, and M8fix versus M8. In

cases where the LRT was significant, the Bayes empirical Bayes

(BEB) method implemented for models M2 and M8 was employed

to calculate the posterior probabilities for codon classes. A third

class of LRT tests known as ‘‘branch-site’’ model that allow the v
ratio to vary among both sites and lineages [34] was also employed

to infer positively selected sites in the ancestral branch leading to

cetaceans. This branch-site test of positive selection was only used

on the first branch leading to cetaceans to test the importance of

this branching event in the overall divergence of cetaceans from

terrestrials (shown with a black circle in Figure 1A). Any further

statistical inference in the cetacean clade by detecting branches

with high dN/dS values based on the free-ratio model should be

corrected by the multiple-hypothesis corrections [72].

Estimating effects of point mutations on folding stability
The initial 3D-structures used for calculating the stability of

single point mutations were taken from the PDB structures of

sperm whale Mb at 1.6 Å [32] and 1.4 Å resolution [73]. These

structures were subject to the standard protocol of FoldX [28]. We

validated the FoldX predicted DDG values for both PDB structures

against a set of experimentally reported Mb mutants. We then

finally used the repaired PDB structure at 1.4 Å [73] which gave

the strongest correlation between calculated and experimental

DDGs, for computing stabilities within the phylogeny. Individual

mutations in the cetacean clade (Figure 3A) were built using

‘‘Build Model’’ command, and DDG values were extracted from

the FoldX output files. For both the validation set and mutations

in Figure 3A, we repeated each mutation five times and took the

average DDG to reduce internal uncertainties of FoldX in

estimating the stability effects of mutations, as recently recom-

mended [74] (see Text S1 for details).

Supporting Information

Text S1 Text S1 contains the following information: Table S1:
Experimental and computed FoldX DDG for a range of Mb

mutations. The FoldX results (last two columns) are reported using

two PDB structures: 1MBO and 1U7S. Figure S1: DDG values

predicted by FoldX versus experimental DDGs (kcal/mol) for the

validation set (pdb = 1MBO). Figure S2: DDG values predicted by

FoldX versus experimental DDGs (kcal/mol) for the validation set

(pdb = 1U7S). Table S2: FoldX calculations for all mutations in

the Cetacean clade using PDB structure 1U7S. Mutations in the

sites detected to be under positive selection are shown in grey.

Table S3: The best nucleotide and amino acid substitution models

fitted to the data. Table S4: Results of amino acid substitution

models for the whale clade. Table S5: Results of nucleotide

substitution models for the whale clade. Table S6: Likelihood ratio

tests for site models when branch lengths are estimated for each

model rather than taking the ML-estimated branch lengths from the

M0 model. LRT values are shown for M7 vs. M8 and M8 vs. M8fix.

Scheme S1: Alignment for sperm whale, pig, bovine, dog, sheep,

horse and human myoglobin (Mb) sequences. Scheme S2: The

most probable cetacean ancestor with the complete phylogenetic

tree (Figure 1-B), primate-rodent truncated tree, and only the

cetacean clade. Table S7: LRT values for M7 vs. M8 and M8 vs.

M8fix for the gene tree of cetaceans rather than using the species

tree. Table S8: Species name and accession number of Mb

sequences used in this study. The end of Text S1 contains

CODEML and NetPhos Output.

(PDF)
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