143 research outputs found

    Training Sound Event Detection On A Heterogeneous Dataset

    Get PDF
    Training a sound event detection algorithm on a heterogeneous dataset including both recorded and synthetic soundscapes that can have various labeling granularity is a non-trivial task that can lead to systems requiring several technical choices. These technical choices are often passed from one system to another without being questioned. We propose to perform a detailed analysis of DCASE 2020 task 4 sound event detection baseline with regards to several aspects such as the type of data used for training, the parameters of the mean-teacher or the transformations applied while generating the synthetic soundscapes. Some of the parameters that are usually used as default are shown to be sub-optimal

    Posterior sampling algorithms for unsupervised speech enhancement with recurrent variational autoencoder

    Full text link
    In this paper, we address the unsupervised speech enhancement problem based on recurrent variational autoencoder (RVAE). This approach offers promising generalization performance over the supervised counterpart. Nevertheless, the involved iterative variational expectation-maximization (VEM) process at test time, which relies on a variational inference method, results in high computational complexity. To tackle this issue, we present efficient sampling techniques based on Langevin dynamics and Metropolis-Hasting algorithms, adapted to the EM-based speech enhancement with RVAE. By directly sampling from the intractable posterior distribution within the EM process, we circumvent the intricacies of variational inference. We conduct a series of experiments, comparing the proposed methods with VEM and a state-of-the-art supervised speech enhancement approach based on diffusion models. The results reveal that our sampling-based algorithms significantly outperform VEM, not only in terms of computational efficiency but also in overall performance. Furthermore, when compared to the supervised baseline, our methods showcase robust generalization performance in mismatched test conditions

    Fast and efficient speech enhancement with variational autoencoders

    Get PDF
    Unsupervised speech enhancement based on variational autoencoders has shown promising performance compared with the commonly used supervised methods. This approach involves the use of a pre-trained deep speech prior along with a parametric noise model, where the noise parameters are learned from the noisy speech signal with an expectationmaximization (EM)-based method. The E-step involves an intractable latent posterior distribution. Existing algorithms to solve this step are either based on computationally heavy Monte Carlo Markov Chain sampling methods and variational inference, or inefficient optimization-based methods. In this paper, we propose a new approach based on Langevin dynamics that generates multiple sequences of samples and comes with a total variation-based regularization to incorporate temporal correlations of latent vectors. Our experiments demonstrate that the developed framework makes an effective compromise between computational efficiency and enhancement quality, and outperforms existing methods

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag

    Foreground-Background Ambient Sound Scene Separation

    Get PDF
    Ambient sound scenes typically comprise multiple short events occurring on top of a somewhat stationary background. We consider the task of separating these events from the background, which we call foreground-background ambient sound scene separation. We propose a deep learning-based separation framework with a suitable feature normaliza-tion scheme and an optional auxiliary network capturing the background statistics, and we investigate its ability to handle the great variety of sound classes encountered in ambient sound scenes, which have often not been seen in training. To do so, we create single-channel foreground-background mixtures using isolated sounds from the DESED and Audioset datasets, and we conduct extensive experiments with mixtures of seen or unseen sound classes at various signal-to-noise ratios. Our experimental findings demonstrate the generalization ability of the proposed approach

    Contributions to speech processing and ambient sound analysis

    Get PDF
    We are constantly surrounded by sounds that we continuously exploit to adapt our actions to situations we are facing. Some of the sounds like speech can have a particular structure from which we can infer some information, explicit or not. This is one reason why speech is possibly that is the most intuitive way to communicate between humans. Within the last decade, there has been significant progress in the domain of speech andaudio processing and in particular in the domain of machine learning applied to speech and audio processing. Thanks to these progresses, speech has become a central element in many human to human distant communication tools as well as in human to machine communication systems. These solutions work pretty well on clean speech or under controlled condition. However, in scenarios that involve the presence of acoustic perturbation such as noise or reverberation systems performance tends to degrade severely. In this thesis we focus on processing speech and its environments from an audio perspective. The algorithms proposed here are relying on a variety of solutions from signal processing based approaches to data-driven solutions based on supervised matrix factorization or deep neural networks. We propose solutions to problems ranging from speech recognition, to speech enhancement or ambient sound analysis. The target is to offer a panorama of the different aspects that could improve a speech processing algorithm working in a real environments. We start by describing automatic speech recognition as a potential end application and progressively unravel the limitations and the proposed solutions ending-up to the more general ambient sound analysis.Nous sommes constamment entourés de sons que nous exploitons pour adapter nos actions aux situations auxquelles nous sommes confrontés. Certains sons comme la parole peuvent avoir une structure particulière à partir de laquelle nous pouvons déduire des informations, explicites ou non. C’est l’une des raisons pour lesquelles la parole est peut-être le moyen le plus intuitif de communiquer entre humains. Au cours de la décennie écoulée, des progrès significatifs ont été réalisés dans le domaine du traitement de la parole et du son et en particulier dans le domaine de l’apprentissage automatique appliqué au traitement de la parole et du son. Grâce à ces progrès, la parole est devenue un élément central de nombreux outils de communication à distance d’humain à humain ainsi que dans les systèmes de communication humain-machine. Ces solutions fonctionnent bien sur un signal de parole propre ou dans des conditions contrôlées. Cependant, dans les scénarios qui impliquent la présence de perturbations acoustiques telles que du bruit ou de la réverbération les performances peuvent avoir tendance à se dégrader gravement. Dans cette HDR, nous nous concentrons sur le traitement de la parole et de son environnement d’un point de vue audio. Les algorithmes proposés ici reposent sur une variété de solutions allant des approches basées sur le traitement du signal aux solutions orientées données à base de factorisation matricielle supervisée ou de réseaux de neurones profonds. Nous proposons des solutions à des problèmes allant de la reconnaissance vocale au rehaussement de la parole ou à l’analyse des sons ambiants. L’objectif est d’offrir un panorama des différents aspects qui pourraient être améliorer un algorithme de traitement de la parole fonctionnant dans un environnement réel. Nous commençons par décrire la reconnaissance automatique de la parole comme une application finale potentielle et analysons progressivement les limites et les solutions proposées aboutissant à l’analyse plus générale des sons ambiants

    Regularized Contrastive Pre-training for Few-shot Bioacoustic Sound Detection

    Full text link
    Bioacoustic sound event detection allows for better understanding of animal behavior and for better monitoring biodiversity using audio. Deep learning systems can help achieve this goal, however it is difficult to acquire sufficient annotated data to train these systems from scratch. To address this limitation, the Detection and Classification of Acoustic Scenes and Events (DCASE) community has recasted the problem within the framework of few-shot learning and organize an annual challenge for learning to detect animal sounds from only five annotated examples. In this work, we regularize supervised contrastive pre-training to learn features that can transfer well on new target tasks with animal sounds unseen during training, achieving a high F-score of 61.52%(0.48) when no feature adaptation is applied, and an F-score of 68.19%(0.75) when we further adapt the learned features for each new target task. This work aims to lower the entry bar to few-shot bioacoustic sound event detection by proposing a simple and yet effective framework for this task, by also providing open-source code

    Unsupervised speech enhancement with diffusion-based generative models

    Full text link
    Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement

    Pretraining Representations for Bioacoustic Few-shot Detection using Supervised Contrastive Learning

    Full text link
    Deep learning has been widely used recently for sound event detection and classification. Its success is linked to the availability of sufficiently large datasets, possibly with corresponding annotations when supervised learning is considered. In bioacoustic applications, most tasks come with few labelled training data, because annotating long recordings is time consuming and costly. Therefore supervised learning is not the best suited approach to solve bioacoustic tasks. The bioacoustic community recasted the problem of sound event detection within the framework of few-shot learning, i.e. training a system with only few labeled examples. The few-shot bioacoustic sound event detection task in the DCASE challenge focuses on detecting events in long audio recordings given only five annotated examples for each class of interest. In this paper, we show that learning a rich feature extractor from scratch can be achieved by leveraging data augmentation using a supervised contrastive learning framework. We highlight the ability of this framework to transfer well for five-shot event detection on previously unseen classes in the training data. We obtain an F-score of 63.46\% on the validation set and 42.7\% on the test set, ranking second in the DCASE challenge. We provide an ablation study for the critical choices of data augmentation techniques as well as for the learning strategy applied on the training set
    • …
    corecore