1,085 research outputs found
Social Activity Recognition on Continuous RGB-D Video Sequences
Modern service robots are provided with one or more sensors, often including RGB-D cameras, to perceive objects and humans in the environment. This paper proposes a new system for the recognition of human social activities from a continuous stream of RGB-D data. Many of the works until now have succeeded in recognising activities from clipped videos in datasets, but for robotic applications it is important to be able to move to more realistic scenarios in which such activities are not manually selected. For this reason, it is useful to detect the time intervals when humans are performing social activities, the recognition of which can contribute to trigger human-robot interactions or to detect situations of potential danger. The main contributions of this research work include a novel system for the recognition of social activities from continuous RGB-D data, combining temporal segmentation and classification, as well as a model for learning the proximity-based priors of the social activities. A new public dataset with RGB-D videos of social and individual activities is also provided and used for evaluating the proposed solutions. The results show the good performance of the system in recognising social activities from continuous RGB-D data
Automatic Detection of Human Interactions from RGB-D Data for Social Activity Classification
We present a system for temporal detection of social interactions. Many of the works until now have succeeded in recognising activities from clipped videos in datasets, but for robotic applications, it is important to be able to move to more realistic data. For this reason, the proposed approach temporally detects intervals where individual or social activity is occurring. Recognition of human activities is a key feature for analysing the human behaviour. In particular, recognition of social activities is useful to trigger human-robot interactions or to detect situations of potential danger. Based on that, this research has three goals: (1) define a new set of descriptors, which are able to characterise human interactions; (2) develop a computational model to segment temporal intervals with social interaction or individual behaviour; (3) provide a public dataset with RGB-D data with continuous stream of individual activities and social interactions. Results show that the proposed approach attained relevant performance with temporal segmentation of social activities
Robust Inference of Kinase Activity Using Functional Networks
Mass spectrometry enables high-throughput screening of phosphoproteins across a broad range of biological contexts. When complemented by computational algorithms, phospho-proteomic data allows the inference of kinase activity, facilitating the identification of dysregulated kinases in various diseases including cancer, Alzheimer’s disease and Parkinson’s disease. To enhance the reliability of kinase activity inference, we present a network-based framework, RoKAI, that integrates various sources of functional information to capture coordinated changes in signaling. Through computational experiments, we show that phosphorylation of sites in the functional neighborhood of a kinase are significantly predictive of its activity. The incorporation of this knowledge in RoKAI consistently enhances the accuracy of kinase activity inference methods while making them more robust to missing annotations and quantifications. This enables the identification of understudied kinases and will likely lead to the development of novel kinase inhibitors for targeted therapy of many diseases. RoKAI is available as web-based tool at http://rokai.io
Communicating with the dead:lipids, lipid mediators and extracellular vesicle
Apoptosis is a key event in the control of inflammation. However, for this to be successful, dying cells must efficiently and effectively communicate their presence to phagocytes to ensure timely removal of dying cells. Here we consider apoptotic cell-derived extracellular vesicles (ACdEV) and the role of contained lipids and lipid mediators in ensuring effective control of inflammation. We discuss key outstanding issues in the study of cell death and cell communication, and introduce the concept of the ‘active extracellular vesicle’ as a metabolically-active and potentially changing intercellular communicator
Novel n-3 Docosapentaneoic Acid-Derived Pro-resolving Mediators Are Vasculoprotective and Mediate the Actions of Statins in Controlling Inflammation
“This is a post-peer-review, pre-copyedit version of a chapter published in Advances in Experimental Medicine and Biology book series (AEMB, volume 1161). The final publication is available athttps://doi.org/10.1007/978-3-030-21735-8_7
An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot
In this work, we present a neuromorphic architecture for head pose estimation and scene representation for the humanoid iCub robot. The spiking neuronal network is fully realized in Intel's neuromorphic research chip, Loihi, and precisely integrates the issued motor commands to estimate the iCub's head pose in a neuronal path-integration process. The neuromorphic vision system of the iCub is used to correct for drift in the pose estimation. Positions of objects in front of the robot are memorized using on-chip synaptic plasticity. We present real-time robotic experiments using 2 degrees of freedom (DoF) of the robot's head and show precise path integration, visual reset, and object position learning on-chip. We discuss the requirements for integrating the robotic system and neuromorphic hardware with current technologies
Recommended from our members
Infection Regulates Pro-Resolving Mediators that Lower Antibiotic Requirements
Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli (E. coli) infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPM). In self-resolving E. coli exudates ( CFU), the dominant SPM identified were resolvin (Rv) D5 and protectin D1 (PD1), which at 12 h were significantly greater than levels in exudates from higher titer E. coli ( CFU) challenged mice. Germ-free mice displayed endogenous RvD1 and PD1 levels higher than in conventional mice. RvD1 and RvD5 (ng/mouse) each reduced bacterial titers in blood and exudates, E. coli-induced hypothermia and increased survival, demonstrating the first actions of RvD5. With human polymorphonuclear neutrophils (PMN) and macrophages, RvD1, RvD5, and PD1 each directly enhanced phagocytosis of E. coli, and RvD5 counter-regulated a panel of pro-inflammatory genes, including NF-κB and TNF-α. RvD5 activated the RvD1 receptor, GPR32, to enhance phagocytosis. With self-limited E. coli infections, RvD1 and the antibiotic ciprofloxacin accelerated resolution, each shortening resolution intervals (Ri). Host-directed RvD1 actions enhanced ciprofloxacin’s therapeutic actions. In CFU E. coli infections, SPM (RvD1, RvD5, PD1) together with ciprofloxacin also heightened host antimicrobial responses. In skin infections, SPM enhanced vancomycin clearance of Staphylococcus aureus. These results demonstrate that specific SPM are temporally and differentially regulated during infections and that they are anti-phlogistic, enhance containment and lower antibiotic requirements for bacterial clearance
ISEC 2005-76251 AN ADAPTIVE PERTURB AND OBSERVE MAXIMUM POWER POINT TRACKING SYSTEM FOR PHOTOVOLTAIC ARRAYS
ABSTRACT This paper presents a maximum power point (MPP) hardware tracking system based on an adaptive Perturb and Observe (PAO) algorithm. Under a given solar and temperature condition the search for the MPP starts with a large perturbation step. When a drop in the delivered power is detected, the size of the step is halved and the direction of duty cycle change is reversed. Eventually the MPP will be tracked by small perturbation step (e.g. 1/ 255). When tracking at a maximum and a sudden change occurs in the atmospheric conditions, the system will try to reach the new MPP, with an adaptive perturbation step size that is allowed to increase after 4 consecutive increases or decrease in the duty cycle leading to increase in power delivery. This adaptive PAO algorithm forces the system to respond fairly quickly to any changes in the solar radiation or temperature level irrespective of where the previous operating point MPP was and without deteriorating the tracking efficiency. A tracking efficiency of about 96% was achieved using a very simple controller
Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals
Aspirin (ASA) is unique among current therapies because it acetylates cyclooxygenase (COX)-2 enabling the biosynthesis of R-containing precursors of endogenous antiinflammatory mediators. Here, we report that lipidomic analysis of exudates obtained in the resolution phase from mice treated with ASA and docosahexaenoic acid (DHA) (C22:6) produce a novel family of bioactive 17R-hydroxy-containing di- and tri-hydroxy-docosanoids termed resolvins. Murine brain treated with aspirin produced endogenous 17R-hydroxydocosahexaenoic acid as did human microglial cells. Human COX-2 converted DHA to 13-hydroxy-DHA that switched with ASA to 17R-HDHA that also proved a major route in hypoxic endothelial cells. Human neutrophils transformed COX-2-ASA–derived 17R-hydroxy-DHA into two sets of novel di- and trihydroxy products; one initiated via oxygenation at carbon 7 and the other at carbon 4. These compounds inhibited (IC50 ∼50 pM) microglial cell cytokine expression and in vivo dermal inflammation and peritonitis at ng doses, reducing 40–80% leukocytic exudates. These results indicate that exudates, vascular, leukocytes and neural cells treated with aspirin convert DHA to novel 17R-hydroxy series of docosanoids that are potent regulators. These biosynthetic pathways utilize omega-3 DHA and EPA during multicellular events in resolution to produce a family of protective compounds, i.e., resolvins, that enhance proresolution status
- …