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ARTICLE

Robust inference of kinase activity using functional
networks
Serhan Yılmaz 1✉, Marzieh Ayati2, Daniela Schlatzer3, A. Ercüment Çiçek4,5, Mark R. Chance3,6 &

Mehmet Koyutürk1,3

Mass spectrometry enables high-throughput screening of phosphoproteins across a broad

range of biological contexts. When complemented by computational algorithms, phospho-

proteomic data allows the inference of kinase activity, facilitating the identification of dys-

regulated kinases in various diseases including cancer, Alzheimer’s disease and Parkinson’s

disease. To enhance the reliability of kinase activity inference, we present a network-based

framework, RoKAI, that integrates various sources of functional information to capture

coordinated changes in signaling. Through computational experiments, we show that phos-

phorylation of sites in the functional neighborhood of a kinase are significantly predictive of

its activity. The incorporation of this knowledge in RoKAI consistently enhances the accuracy

of kinase activity inference methods while making them more robust to missing annotations

and quantifications. This enables the identification of understudied kinases and will likely lead

to the development of novel kinase inhibitors for targeted therapy of many diseases. RoKAI is

available as web-based tool at http://rokai.io.
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Protein phosphorylation is a ubiquitous mechanism of
posttranslational modification observed across cell types
and species, and plays a central role in cellular signaling.

Phosphorylation is regulated by networks composed of kinases,
phosphatases, and their substrates. Characterization of these
networks is becoming increasingly important in many biomedical
applications, including identification of novel disease-specific
drug targets, development of patient-specific therapeutics, and
prediction of treatment outcomes1,2.

In the context of cancer, identification of kinases plays a key
role in the pathogenesis of specific cancers and their subtypes,
leading to the development of kinase inhibitors for targeted
therapy3–6. Disruptions in the phosphorylation of various sig-
naling proteins have also been implicated in the pathophysiology
of various other diseases, including Alzheimer’s disease7,8, Par-
kinson’s disease9, obesity and diabetes10,11, and fatty liver dis-
ease12, among others. As a consequence, there is increased
attention to monitoring the phosphorylation levels of phospho-
proteins across a wide range of biological contexts and inferring
changes in kinase activity under specific conditions.

Mass spectrometry (MS) provides unprecedented opportunities
for large-scale identification and quantification of phosphoryla-
tion levels13. Typically, thousands of sites are identified in a single
MS run. Besides enabling the characterization of the changes in
the activity of phosphoproteins, MS-based phospho-proteomic
data offers insights into kinase activity based on changes in the
phosphorylation of known kinase–substrates14,15. Observing that
phosphorylation levels of the substrates of a kinase offer clues on
kinase activity,14 use a Kolmogorov–Smirnov (K–S) statistic to
compare the phosphorylation distributions of substrate sites and
all other phosphosites. Building on this idea, kinase–substrate
enrichment analysis (KSEA)15 infers kinase activity based on
aggregates of the phosphorylation levels of substrates and assess
the statistical significance using Z-test.16 Develop these ideas
further by introducing a heuristic machine learning method,
IKAP, which additionally models the dependencies between
kinases that phosphorylate the same substrate. Other
approaches17,18 adapt the widely used gene set enrichment ana-
lysis (GSEA)19 for kinase activity inference problem. In parallel to
these, a new branch of computational approaches focus on single
samples to infer kinase activity20–23.

Despite the development of algorithms that utilize relatively
sophisticated models, KSEA remains one of the most-widely used
tools for kinase activity inference24. This can be largely attributed
to the constraints posed by limited comprehensiveness of avail-
able data, prohibiting the utility of such sophisticated models.
Available kinase annotations still provide very little coverage
(<10%) for phosphosites identified in MS experiments25. The
coverage of MS-based phospho-proteomics is also limited, and
many sites existing in sample may be unidentified due to tech-
nical factors26. Computationally predicted kinase–substrate
associations27,28 are successfully utilized to expand the scope of
kinase activity inference29. However, the coverage of computa-
tionally predicted associations is also limited30 and most algo-
rithms can only make predictions for well-studied kinases31.

With a view to expanding the scope of kinase activity inference,
we develop a framework that comprehensively utilizes available
functional information on kinases and their substrates. We
hypothesize that biologically significant changes in signaling
manifest as hyper-phosphorylation or dephosphorylation of
multiple functionally related sites. Therefore, having consistently
hyper-phosphorylated (or dephosphorylated) sites in the func-
tional neighborhood of a phosphosite can provide further evi-
dence about the changes in the phosphorylation of that site. Our
framework, robust kinase activity inference (RoKAI), uses a

heterogeneous network model to integrate relevant sources of
functional information, including: (i) kinase–substrate associa-
tions from PhosphositePlus32, (ii) coevolution and structural
distance evidence between phosphosites from PTMcode33, and
(iii) protein–protein interactions (PPI) from STRING34 for
interactions between kinases. On this heterogeneous network, we
propagate the quantifications of phosphosites to compute repre-
sentative phosphorylation levels capturing coordinated changes in
signaling. To predict changes in kinase activity, we use these
resulting representative phosphorylation levels in combination
with existing kinase activity inference methods.

In order to increase the coverage of network propagation, we
develop an electric circuit-based model35,36 that is specifically
designed to incorporate missing sites not identified by MS. While
RoKAI does not impute phosphorylation levels for unidentified
sites (i.e., it is not intended to fill in missing data), it uses these
sites to bridge the functional connectivity among identified sites.
Similar electric circuit-based models have been employed in the
analysis of expression quantitative trait loci to identify causal
genes and dysregulated pathways37,38. However, one important
distinction is that the electric circuit model in RoKAI does not
aim to uncover intermediate nodes between select target nodes,
rather, it propagates all available quantifications over the network
in order to reduce the noise by capturing consistent changes in
the functional neighborhood of every node.

A recent study by39 benchmarks substrate-based inference
approaches using a comprehensive atlas of human kinase reg-
ulation18, encompassing more than fifty perturbations. Using this
dataset, we systematically benchmark the improvement provided
by RoKAI on the performance of a variety of kinase activity
inference methods. In our computational experiments, we
observe that the benchmark data is substantially biased in favor of
“rich kinases” with many known substrates. Our results show that
methods that appear to provide superior performance (e.g.,
methods that utilize statistical significance) accomplish this by
increasing bias toward such rich kinases (since statistical power
goes up with increasing number of observations). Motivated by
this observation, we systematically evaluate the robustness of
kinase activity inference methods using Monte Carlo simulations
with varying levels of missingness. The results of this analysis
shows that methods biased toward rich kinases are more vul-
nerable to incompleteness of available kinase–substrate
annotations.

Next, we characterize the contribution of each source of
functional information on enhancing kinase activity inference.
Our results show that incorporation of “shared-kinase associa-
tions” (i.e., transferring information between sites that are tar-
geted by the same kinase) significantly improves kinase activity
inference. We observe that, other sources of functional infor-
mation considered (PPI, coevolution, and structure distance
evidence) also provide statistically significant information for
kinase activity inference. However, their contribution is smaller in
comparison due to either (i) limited coverage or (ii) redundancy
with existing kinase–substrate annotations. Finally, we system-
atically investigate the performance of RoKAI in improving the
performance of kinase activity methods. Results of these com-
putational experiments show that RoKAI consistently improves
the accuracy, stability, and robustness of all kinase activity
inference methods that are benchmarked.

Overall, our results clearly demonstrate the utility of functional
information in expanding the scope of kinase activity inference
and establish RoKAI as a useful tool in pursuit of reliable kinase
activity inference. RoKAI is available as a web tool (http://rokai.
io), as well as an open source MATLAB package (http://compbio.
case.edu/omics/software/rokai).
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Results
Robust inference of kinase activity with RoKAI. With a view to
rendering kinase activity inference robust to missing data and
annotations, we develop RoKAI, a network-based algorithm that
utilizes available functional associations to compute refined
phosphorylation profiles. We hypothesize that biologically sig-
nificant changes in signaling manifest as hyper-phosphorylation
or dephosphorylation of multiple functionally related sites.
Therefore, having consistently hyper-phosphorylated (or depho-
sphorylated) sites in the functional neighborhood of a phospho-
site can provide further evidence about the changes in the
phosphorylation of that site. Conversely, inconsistency in the
change in the phosphorylation levels of sites in a functional
neighborhood can serve as negative evidence that can be used to
reduce noise.

Based on this hypothesis, we develop a heterogeneous network
model (with kinases and phosphosites as nodes) to propagate the
phosphorylation of sites across functional neighborhoods. In this
model, each edge has a conductance allowing some portion of the
phosphorylation to be carried to the connecting nodes (illustrated
in Fig. 1). Therefore, the propagated phosphorylation level of a
site represents an aggregate of the phosphorylation of the site and
the sites that are (directly or indirectly) functionally associated
with it. Consequently, the propagated phosphorylation profiles
are expected to capture coordinated changes in signaling, which
are potentially less noisy and more robust.

It is important to note that, we do not use network propagation
to directly infer kinase activity. Rather, we use it to generate
refined phosphorylation profiles that are subsequently used as
input to a kinase activity inference method. Thus, the framework
of RoKAI can be used together with any existing or future
inference methods.

Experimental setup. In this section, we describe our bench-
marking setup for assessing the performance and robustness of
kinase activity inference methods. First, we demonstrate the bias
in the gold standard benchmarking data and show how this bias
can lead to misleading conclusions on the performance of existing
methods. Next, we introduce a robustness analysis in order to (i)
overcome the effect of bias on performance estimations, and (ii)
to assess the reliability of these algorithms in the presence of
missing data. To characterize the value added by RoKAI, we start
by assessing the utility of different sources of functional infor-
mation in inferring kinase activity. Next, by focusing on a base-
line kinase activity inference method (mean substrate
phosphorylation), we systematically assess the incorporation of
various networks with RoKAI in enhancing the accuracy and
robustness of the inference. We then assess the generalizability of
these results to a broad range of kinase activity inference meth-
ods. Afterward, we investigate whether RoKAI’s ability to incor-
porate missing sites in its functional network contributes to the
improvement of kinase activity inference. Finally, we explore the
effect of including predicted kinase–substrate associations within
the RoKAI’s framework.

Benchmarking setup
Benchmarking data. Ref. 18 compiled phospho-proteomics data
from a comprehensive range of perturbation studies and used
these data to comprehensively benchmark the performance of
kinase activity inference methods39. This benchmark data brings
together 24 studies spanning 91 perturbations that are annotated
with at least one upregulated or downregulated kinase. In each of
the studies, the phosphorylation levels of phosphosites are
quantified using MS. After applying quality control steps (as
described in the “Methods”), we analyze a subset of this dataset

Fig. 1 The workflow and the key idea of RoKAI. Traditional algorithms for kinase activity inference use condition-specific phosphorylation data and
available kinase–substrate associations to identify kinases with differential activity in each condition. RoKAI integrates functional networks of kinases and
phosphorylation sites to generate robust phosphorylation profiles. The network propagation algorithm implemented by RoKAI ensures that unidentified
sites that lack quantification levels in a condition can still be used as bridges to propagate phosphorylation data through functional paths.
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encompassing 80 perturbations and 53,636 phosphosites identi-
fied in at least one of these 80 perturbations. Overall, for these 80
perturbations, there are 128 kinase-perturbation annotations
(which is considered gold standard) for 25 different kinases
(listed in Supplementary Data 1). In our computational experi-
ments, we use this dataset to assess the robustness of existing
kinase activity inference methods and validate our algorithms.

Kinase–substrate annotations. We obtain existing kinase–substrate
associations from PhosphositePlus32. PhosphositePlus contains a
total of 10,476 kinase–substrate links for 371 distinct kinases and
7480 sites. Among these annotated sites, 2397 have quantifications
in the perturbation data. These sites have a total of 3877
kinase–substrate links with 261 kinases.

Benchmarking metric. The main purpose of kinase activity
inference is to prioritize kinases for additional consideration and
ideally for experimental validation. However, in practice, it is
typically very costly to experimentally validate more than a few
kinases40 and it is infeasible to manually inspect more than a
couple dozen. Whereas, benchmarking approaches that are
employed in the literature like area under receiver operating
characteristics curve and precision at recall 0.5 consider high
number of predictions (k), including kinases that are less sig-
nificant/active. We find such measures problematic because, even
though they include the performance for a high number of pre-
dicted kinases in their calculation, it would not be practical for a
potential user to inspect or use that many predictions. To take
this consideration into account, we use a metric, “top-k-hit”, that
focuses on the top k kinase predictions for small values of k. Since
the gold standard dataset is incomplete, this metric essentially
serves as a minimum bound on the expected probability of dis-
covering an upregulated or downregulated kinase if top k kinases
predicted by the inference method were to be experimentally
validated. In our experiments, we use k= 10 (unless otherwise
specified) since it represents a reasonable number of kinases to be
put to additional scrutiny before experimental validation.

Existing inference methods. Kinase activity inference methods
differ from each other in terms how they integrate the phos-
phorylation levels of the substrates of a kinase to estimate its
activity. These methods range from simple aggregates and

enrichment analyses to more sophisticated methods that take into
account the interplay between different kinases. We benchmark
the following commonly used inference methods:

● Mean (baseline method): one of the simpliest kinase activity
inference methods employed by KSEA15. This method
represents the activity of a kinase as the mean phosphoryla-
tion of its substrates.

● Z-score: to assess the statistical significance of inferred
activities, KSEA uses z-scores, normalizing the total log-fold
change of substrates with the standard deviation of the log-
fold changes of all sites in the dataset.

● Linear model: the linear model, considered by ref. 39, aims to
take into account of the dependencies between kinases that
phosphorylate the same site. In this model, the phosphoryla-
tion of a site is modeled as summation of the activities of
kinases that phosphorylate the site. A similar (but more
complex) approach is also utilized by IKAP16.

● GSEA: refs. 17 and 18 adopt GSEA, a widely used method in
systems biology19, to infer kinase activity by assessing whether
the target sites of a kinase exhibit are enriched in terms of
their phosphorylation fold change compared to other
phosphosites.

Bias and robustness of existing inference methods. Previous
benchmarking by ref. 39 suggests that methods that rely on sta-
tistical significance (Z-Score and GSEA) are superior to their
alternatives. However, as shown in Fig. 2a, we observe that there
is substantial bias in the benchmarking data: “rich” kinases (i.e.,
kinases with many known substrates) are significantly over-
represented among the 25 annotated kinases that have at least one
perturbation (median number of substrates: 29 for annotated and
4 for not-annotated kinases, K–S test p value < 3.5e−7 for the
comparison of annotated kinases with others in terms of their
distribution of number of substrates).

Since methods that rely on statistic significance have a positive
bias for kinases with many substrates (statistical power is
improved with number of observations), we hypothesize that
this is the reason behind their observed superior performance. To
test this hypothesis, we benchmark two additional inference
methods that are artificially biased for kinases with many

Fig. 2 Existing benchmark data for kinase activity inference is biased toward kinases with high number of substrates and can be misleading in
assessing the performance of inference methods. a Inverse cumulative distribution of the number of substrates for the 25 kinases that are annotated with
a perturbation in gold standard benchmarking data compared to all kinases. The x-axis indicates the quantiles. For example, the value on the y-axis that
corresponds to x= 50% indicates the median number of substrates. b Performance and bias of baseline kinase activity inference methods. The bars show
the probability of identifying an annotated “true” kinase in top ten predicted kinases (Phit10). The dashed line indicates the average number of substrates of
the top ten predicted kinases for the corresponding method. The high-bias methods (Sum: total substrate phosphorylation, and Num: number of
substrates) are not used in the literature, but are shown here to illustrate the effect of bias on performance assessment. c The robustness analysis of the
methods for missingness in kinase–substrates links. The x-axis shows the percentage of (randomly selected) kinase–substrates links of 25 gold standard
kinases hidden from the kinase activity inference methods. The gray areas indicate the 95% confidence intervals for the mean performance across
100 runs.
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substrates: (i) Sum: sum of phosphorylation (log-fold changes) of
substrates, and (ii) Num: number of substrates, used directly as
the predicted activity of a kinase (clearly, this method does not
use the phosphorylation levels of sites, thus, it always generates
the same ranking of kinases regardless of the phosphorylation
data). As shown in Fig. 2b, methods that are artifically biased for
rich kinases appear to have better predictivity over the
alternatives.

In order to overcome the effect of this bias on evaluation, we
perform a robustness analysis where we hide a percentage of the
known substrates of the 25 annotated kinases from the inference
methods. The results of this analysis are shown in Fig. 2c. As seen
in the figure, even though methods biased for rich kinases appear
to have higher predictivity when all of the available
kinase–substrate annotations are used, they are not robust to
increasing rate of missingness in kinase–substrate annotations.
The performance of artificially biased methods fall below that of
the low-biased methods (e.g., mean and linear model) at ~50%
missingness. At ~80% missingness, the effect of the bias on
evaluation is mitigated, i.e., the difference between number of
substrates of 25 annotated kinases and the remaining kinases is
not at a statistically detectable level anymore. Thus, the
performance of biased (e.g., statistical significance based)
methods fall below the low-bias methods at ~80% missingness.
These observations make the reliability of biased methods highly
questionable since the available kinase–substrate annotations are
largely incomplete.

Utility of functional networks for inferring kinase activity. To
improve the predictions of kinase activity inference methods in a
robust manner, our approach is to utilize available functional or
structural information. We hypothesize that phosphorylation of
sites that are related to the kinase–substrates (whether function-
ally or structurally) would be predictive of kinase activity. Spe-
cifically, we investigate the predictive ability of following
functional networks:

● Known kinase–substrates (baseline network): this network
comprises of the kinase–substrate associations obtained from
PhosphoSitePlus. This is the (only) network that is utilized by
all kinase activity inference methods and serves as our
baseline.

● Shared-kinase interactions: here, we consider two phospho-
sites to be neighbors if both are phosphorylated by the same
kinase. We hypothesize that phosphorylation of neighbor sites
of kinase–substrates would be predictive of kinase activity.
Note that in RoKAI’s heterogeneous functional network, there
are no additional edges that represent shared-kinase interac-
tions. Instead, RoKAI’s network propagation algorithm
propagates phosphorylation levels across shared-kinase sites
through paths composed of kinase–substrate associations.

● STRING PPI: we hypothesize that the phosphorylation levels
of the substrates of two interacting kinases will be predictive
of each other’s activity.

● PTMcode structural distance evidence: we hypothesize that
the phosphorylation of sites that are structurally similar to a
kinase’s substrates will be predictive of that kinase’s activity.

● PTMcode coevolution evidence: we hypothesize that phos-
phorylation of sites that show similar evolutionary trajectories
to a kinase’s substrates will be predictive of that kinase’s
activity.

For each of the functional or structural networks described
above, we compute a network activity prediction score for each
kinase based on the mean phosphorylation of sites that are
considered of interest for the corresponding network (illustrated

in Fig. 3). Note that, except for the baseline network (known
kinase–substrates), we do not use the phosphorylation levels of
the kinase’s own substrates to compute the scores for each
network.

To characterize the contribution of each source of functional
information on enhancing kinase activity inference, we consider
the following metrics:

● Predictivity: to assess the utility of functional networks in
predicting the “true” perturbed kinases in gold standard
dataset, we use K–S test41 comparing the distribution of
network scores for true kinases with the distribution of all
other kinases. For each functional network, we consider the
K–S statistic as the predictivity score of the corresponding
network.

● Coverage: the network scores contain missing values for
kinases without any edges in the corresponding functional
networks. Thus, while assessing predictivity (as explained
above), we utilize only the kinases with a valid network score.
To take missing data into account, we compute a coverage
score which is equal to the percentage of kinases with a valid
network score with respect to that functional network.

● Complementarity: we aim to utilize the functional networks
as an information source that complements available
kinase–substrate associations. If there is statistical dependency
between functional network scores and the activity inferred by
the kinase’s own sites, the information provided by the
network would be redundant. We use complementarity score
as one minus absolute linear (Pearson) correlation between
the score of each network scores and kinase activity inferred
based on the kinase’s own substrates. Since the
kinase–substrate association network serves as our baseline,
we consider it to have 100% complementarity.

● Overall effect: to quantify the overall contribution of the
functional networks for improving the predictions of kinase
activity, we combine the predicity, coverage and complemen-
tarity scores and obtain an overall effect score:

Overalleffect ¼ predictivity ´ coverage ´ complementarity ð1Þ
The results of this analysis are shown in Fig. 3. As can be seen,

all considered functional information sources exhibit statistically
significant predictivity of the kinase-perturbations according to
two-sample K–S test: known kinase–substrates (K–S statistic=
0.21, p value ≤ 1.3e−4), shared-kinase interactions (K–S statistic
= 0.21, p value ≤ 7.3e−5), PPI (K–S statistic= 0.18, p value ≤ 8.7e
−4), structure distance evidence (K–S statistic= 0.29, p value ≤
0.03), and coevolution evidence (K–S statistic= 0.26, p value ≤
5.5e−5). We observe that the incorporation of “shared-kinase
associations” in addition to the known kinase–substrates has the
most overall contribution to the inference of kinase activities
(Fig. 3a, b), followed by kinase–kinase interactions (Fig. 3c). Even
though coevolution and structural distance networks exhibit
strong predictivity, their overall contribution is relatively low due
to their limited coverage and redundancy with existing
kinase–substrate annotations (Fig. 3d, e).

Benchmarking RoKAI-enhanced inference methods. Motivated
by the utility of the functional networks for predicting kinase
activity, we gradually explore a set of heterogeneous networks
with RoKAI by adding sources of functional information pri-
marily based on their overall effect observed in the previous
section:

● Kinase–substrate (KS) network: the network used by RoKAI
consists only of the known kinase–substrate interactions. Use
of this network allows RoKAI to utilize sites with shared-
kinase interactions (illustrated in Fig. 3b), i.e., sites that are
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targeted by the same kinase contribute to their refined
phosphorylation profiles.

● KS+ PPI network: in addition to KS, this network includes
weighted PPI between kinases. This allows propagation of
phosphorylation levels between substrates of interacting
kinases (illustrated in Fig. 3c).

● KS+ PPI+ SD network: in addition KS+ PPI, this network
includes interactions between phosphosites with structural
distance (SD) evidence obtained from PTMcode. This allows
the utilization of sites that are structurally proximate to the
substrates of a kinase (illustrated in Fig. 3d).

● KS+ PPI+ SD+ CoEv (combined) network: in addition KS
+ PPI+ SD, this network includes interactions between

phosphosites with coevolution evidence obtained from
PTMcode. This allows the utilization of sites that are
evolutionarily similar to the substrates of a kinase (illustrated
in Fig. 3e).

To assess the performance of RoKAI with these networks, we
use the benchmarking data from the atlas of kinase regulation. As
previously discussed, this dataset is heavily biased toward kinases
with many known substrates. To overcome the effect of this bias
on evaluation, we perform robustness analyses where we hide a
portion of known kinase–substrate interactions of the 25 kinases
that have perturbations. For predicting kinase activity, we use the
mean substrate phosphorylation (baseline inference method) and

Fig. 3 Utility of available functional or structural information in providing information on kinase activity. Each panel (labeled a–e) represents a different
information source. The first panel (kinase–substrates) represents the information source that is utilized by all existing kinase activity inference methods,
whereas, the other four panels represent the information sources introduced here. In each panel, the relationship between a kinase (blue square) and the
site(s) (red circles) that provide(s) information on the activity of the kinase is illustrated. The bottom-left plot compares the empirical cumulative
distribution (ECDF) of the phosphorylation levels of the “information-providing” sites for “true” perturbed kinases in the benchmark data against all kinases.
The bottom-right plot shows the predictivity (accuracy in predicting kinase activity), complementarity (information provided in addition to the substrates of
the kinase), and coverage (fraction of kinases that are affected) of the information source. The bars represent the overall effect of the information source
calculated as the product of the scores shown on the other axes.
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compare the performance of original predictions and RoKAI-
enhanced predictions. As shown in Fig. 4a, b, RoKAI consistently
and significantly (p < 0.05) improves the predictions in a robust
manner for varying levels of missing data.

The functional networks that contribute most to the improve-
ments in prediction performance of RoKAI are respectively: KS
network (modeling shared-kinase interactions) followed by PPI
(for including kinase–kinase interactions) followed by coevolu-
tion evidence. Compared to these, including structural distance
evidence in the network has a minor effect on prediction
performance. This is in line with the overall effect size estimations
(shown in Fig. 3). Since structural distance network has relatively
small number of such edges, it provides low coverage and a minor
effect size even though the existing edges are estimated to be more
predictive of kinase activity compared to other networks.

To further evaluate the robustness of the predictions, we assess
the stability, i.e., the expected degree of aggreement between the
predicted kinase activity profiles when different kinase–substrates
are used (e.g., because some sites are not identified by a MS run)

to infer the activity of a kinase. We measure the stability by
computing average squared correlation between different runs of
robustness analysis (where a different portion of kinase–substrate
links are used for inferring kinase activity in each run). As shown
in Fig. 4c, d, predictions made by RoKAI-enhanced phosphor-
ylation profiles are significantly (p < 0.05) more stable in addition
to being more predictive.

Improvement of RoKAI over a broad range of methods. Since
RoKAI provides refined phosphorylation profiles (propagated
by functional networks), it can be used in conjunction with any
existing (or future) kinase activity inference algorithms. Here,
we benchmark the performance of RoKAI when used together
with existing inference methods. For each of these methods, we
use the refined phosphorylation profile (obtained by RoKAI) to
obtain the RoKAI-enhanced kinase activity predictions. To
assess the prediction performance while addressing the bias for
rich kinases, we perform robustness analysis at 50%
kinase–substrate missingness and measure the top-k-hit

Fig. 4 Comparison of the accuracy and stability of mean substrate phoshorylation and its RoKAI-enhanced versions using various functional or
structural networks. a The hit-10 performance (the probability of ranking a true perturbed kinase in the top ten), as a function of missingness (the fraction
of kinase–substrate associations that are hidden). The shaded areas indicate the 95% confidence intervals for the mean performance across 100
randomized runs. b The distribution of hit-10 probabilities for 100 runs at 50% missingness. c Stability of the inferred activities (measured by the average
squared correlation between inferred activities when different portions of kinase–substrate associations are hidden from the inference methods) as a
function of missingness. The shaded areas indicate 95% confidence intervals for the mean stability across 100 randomized runs. d The distribution of
stability for 100 runs at 50% missingness.
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performance for k= 2, 5, 10, and 20. As shown in Fig. 5, RoKAI
consistently improves the predictions of all inference methods
tested.

Effect of incorporating unidentified sites in RoKAI. An
important feature of RoKAI’s network propagation algorithm is
its ability to accommodate unidentified sites (i.e., sites that do not
have quantified phosphorylation levels in the data) in the func-
tional network. While RoKAI does not impute phosphorylation
levels for unidentified sites (i.e., it is not intended to fill in missing
data), it uses these sites to bridge the functional connectivity
among identified sites. To assess the value added by this feature,
we compare two versions of RoKAI: one that removes uni-
dentified sites from the network (type I) and one that utilizes
unidentified sites as bridges (type II). The results of this analysis
are shown in Fig. 6. The kinase activity inference activity method
we use in these experiments is mean phosphorylation level. As
seen in the figure, retention of unidentified sites in the network
consistently improves the accuracy of kinase activity inference
although the magnitude of this improvement is rather modest (in
comparison to the overall improvement of RoKAI to the base-
line). We observe a similar improvement for all other kinase
activity inference methods that are considered.

Effect of incorporating predicted kinase–substrate associations.
Next, we investigate the utility of using predicted kinase–substrate
associations within the RoKAI’s framework. For this purpose, we
use NetworKIN28, which lists its predictions separately as motif-
based (NetPhorest), interaction-based (STRING), or combined
(using both motif and interaction informations). To incorporate
these predictions in RoKAI’s framework, we consider two
strategies:

1. Include the predicted kinase–substrate interactions (in
addition to known substrates in PhosphositePlus) during
the kinase activity inference but do not alter the RoKAI’s
functional network.

2. Include the predicted interactions in both RoKAI’s
functional network and during the kinase activity inference
(this strategy is annotated RoKAI+).

For this analysis, we use the baseline method (mean
phosphorylation) for the inference. To make the results
comparable with our previous analysis (using only the known
substrates in PhosphositePlus), we limit the analysis to the
kinases with at least one known substrate identified in the
perturbation experiments (this way, we keep the kinase set same
as before). The results of this analysis are shown in Fig. 7. Here,
the x-axis shows the number of predicted interactions included in

Fig. 5 Contribution of RoKAI (combined network) in improving the performance of different kinase activity inference methods for predicting the true
(annotated) kinase in the top k kinase predictions for various k. The bars show the mean probability of predicting a true kinase among the top k kinases
at 50% kinase–substrate missingness. The blue bars indicate the prediction performance using the original (unmodified) phosphorylation profiles and red
bars indicate the performance of using RoKAI-enhanced profiles for inferring kinase activity. The colored dashed lines indicate the average number of
substrates of the top k kinases predicted by the corresponding inference method (the gray dashed line shows the maximum possible). The black error bars
indicate the 95% confidence intervals for the mean performance across 100 randomized runs. The colored points around each bar indicate the
performance on different runs.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21211-6

8 NATURE COMMUNICATIONS | (2021)12:1177 | https://doi.org/10.1038/s41467-021-21211-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the inference (i.e., as we go right on the x-axis, we apply a more
relaxed threshold on the prediction score). Thus, the leftmost
point (0 at x-axis) corresponds to the case where only confirmed
interactions (PhosphositePlus) are used.

As expected, the inclusion of predicted interactions in kinase
activity inference improves the performance for the baseline
algorithm and the performance of RoKAI-enhanced inference

stays above the baseline. However, we observe that the use of
predicted interactions together with RoKAI does not improve the
inference further (while there is some increase in performance
with the inclusion of high-confidence predictions, the inclusion of
lower-confidence predictions degrades the performance). In
addition, the inclusion of predicted interactions within the
RoKAI’s functional network always results in less accurate

Fig. 6 RoKAI improves kinase activity inference by enabling utilization of the unidentified sites (without quantifications) for predicting the activity of
kinases. In type I (illustrated in top left), the network consists only of sites with quantifications. Whereas, in type II (illustrated in top right), the network
includes sites without quantifications to utilize them as bridge nodes. (Bottom left) robustness analysis with respect to missingness of kinase–substrate
links. The shaded area shows the 95% confidence interval for the mean performance on 100 randomized runs where different kinase–substrate links are
removed. (Bottom right) The performance of RoKAI type I and type II at 50% missingness. Each point indicate the performance on a different run. The lines
indicate the mean performance across 100 runs.

Fig. 7 The effect of including kinase–substrate links predicted by NetworKin on kinase activity inference. Each panel shows the results for a difference
scoring (used for kinase–substrate edges). In each panel, the x-axis shows the number of edges used by the inference methods in addition to the
kinase–substrate annotations from PhosphositePlus (PSP). The colored blue and orange lines indicate the performance of baseline method (mean substrate
phosphorylation) and its RoKAI-enhanced version, respectively. The dashed-orange line (RoKAI+) indicate the performance when the functional network
of RoKAI additionally includes the predicted kinase–substrate edges by NetworKin.
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inference. Taken together, these observations suggest that, since
RoKAI already includes functional and structural information to
compute propagated phosphorylation levels, the inclusion of
predicted interactions that use similar information does not
further enhance the accuracy of the inference.

Discussion
By comprehensively utilizing available data on the functional
relationships among kinases, phosphoproteins, and phosphor-
ylation sites, RoKAI improves the robustness of kinase activity
inference to the missing annotations and quantifications. Its
implementation is available as open source in Matlab, as well as a
web tool (http://rokai.io) for easy accessibility. We expect that this
will facilitate the identification of understudied kinases with only
a few annotations and lead to the development of novel kinase
inhibitors for targeted therapy of many diseases, such as cancer,
Alzheimer’s disease, and Parkinson’s disease. As additional
functional information on cellular signaling becomes available,
the inclusion of these information in functional networks utilized
by RoKAI will likely further enhance the accuracy and robustness
of kinase activity inference.

The introduced benchmarking setup provides the opportunity
to explore and compare the predictions of a variety of inference
algorithms in terms of their robustness to missing annotations. It
also allows the estimation of how utilization of different func-
tional networks would influence the inference process. These
features can help enable researchers to understand the trade-offs
between different kinase activity inference algorithms in terms of
their robustness, accuracy, and biases. As a potential resource, we
provide the materials (code and data) to reproduce our analysis
results in figshare (https://doi.org/10.6084/m9.figshare.12644864)
that the users can adapt to test different inference methods and/or
networks. Using such a framework, we believe the users can make
more informed decisions for follow-up studies.

A noteworthy complication in perturbation studies that con-
cern kinase activity inference is the effect of off-target kinases.
While recent studies systematically identify off-target kinases in
perturbation studies42,43, the extension of kinase activity infer-
ence algorithms and tools like RoKAI to distinguish off-target
effects remains an open problem that can advance many
important applications like the drug development.

An important consideration in kinase activity inference is the
dependencies between phosphorylation levels of sites. Some
inference methods take into account the dependency between
sites that are targeted by the same kinase16,39. On the other hand,
recent studies utilize protein expression to take into account the
dependency between sites on the same protein by normalizing
phosphorylation levels of the sites, but results on the effectiveness
of this approach are not conclusive44,45. Whereas, RoKAI
implicitly considers the dependencies between sites using a
functional network model. We recognize the explicit modeling of
the dependencies as an important open problem that can further
enhance the performance and reliability of kinase activity
inference.

A key motivation in developing RoKAI was to utilize the
missing sites without quantifications by keeping them as bridges
in the network (thus, increasing the overall coverage of the net-
work). In our experiments, we indeed observe a consistent
improvement for incorporating missing sites (as compared to
disregarding them completely). However, contrary to our
expectation, the magnitude of this improvement is rather modest.
We hypothesize that this may be because of (i) biological
redundancy, i.e., sites that are reached by missing, bridge nodes
may already be covered by other paths consisting of identified

nodes, and (ii) our incomplete knowledge of functional networks,
e.g., kinase–substrate annotations. To this end, construction of
more comprehensive and detailed networks can potentially
enhance the utility of missing sites in improving kinase activity
inference. Overall, we recognize this as an important direction for
future research.

Methods
Problem definition. Kinase activity inference can be defined as the problem of
predicting changes in kinase activity based on observed changes in the phos-
phorylation levels of substrates. Formally, let K= {k1, k2, ..., km} denote a set of
kinases and S= {s1, s2, ..., sn} denote a set of phosphorylation sites. For these
kinases and phosphosites, a set of annotations are available, where Si⊆ S denotes
the set of substrates of kinase ki, i.e., sj∈ Si if kinase ki phosphorylates site sj.

In addition to the annotations, we are given a phosphorylation dataset
representing a specific biological context. This dataset can be represented as a set of
quantities qj for 1 ≤ j ≤ n, where qj denotes the change in the phosphorylation level
of phosphosite sj∈ S. Usually, qj represents the log-fold change of the
phosphorylation level of the site between two sets of samples representing different
conditions, phenotypes, or perturbations. The objective of kinase activity inference
is to integrate the annotations and the specific phosphorylation data to identify the
kinases with significant difference in their activity between these two sets of
samples. In the below discussion, we denote the inferred change in the activity of
kinase ki as âi . Since existing kinase activity inference methods are unsupervised,
many activity inference methods also compute a p value to assess the statistical
significance of âi for each kinase.

Background. Mean (baseline): this is a simple method that represents the activity
of a kinase as the mean phosphorylation (log-fold change) of its substrates:

â ðmeanÞ
i ¼

P
sj2Si qj
jSij

: ð2Þ

where ∣Si∣ is the number of substrates of kinase ki.
Z-score: this method normalizes the mean phosphorylation of the substrates to

reflect statistical significance:

âð z�score Þ
i ¼

P
sj2Si qj

σ
ffiffiffiffiffiffiffijSij

p ¼
ffiffiffiffiffiffiffijSij

p
σ

â ðmeanÞ
i ; ð3Þ

where σ is the standard deviation of phosphorylation (log-fold changes) across
all phosphosites.

Linear model: in this model, the phosphorylation of a site is modeled as
summation of the activities of kinases that phosphorylate the site:

qj ¼
X

for all kinases i
phosphorylating site j

ai ð4Þ

where ai is variable representing the activity of kinase ki. To infer the kinase
activities, least squares optimization function with ridge regularization is used:

âðlinearÞ ¼ argmin a
X
sj2S

ðqj �
X
ki2Kj

aiÞ
2 þ λjjajj2

8<
:

9=
;; ð5Þ

where Kj denotes the set of kinases that phosphorylate site sj, and λ is an adjustable
regularization coefficient. The first term in the objective function (squared loss)
ensures that the inferred kinase activities are consistent with the phosphorylation
levels of their substrates, whereas the second term (regularization) aims to
minimize the overall magnitude of inferred kinase activities. In all experiments, we
utilize a regularization coefficient of λ= 0.1 as previously done in ref. 39.

GSEA: to infer the activity of a kinase, this method assesses whether the
substrates of the kinase are more enriched compared to other phosphosites in
terms of their phosphorylation. To compute the enrichment score, the sites are first
ranked based on their absolute fold changes. For each kinase ki, a running sum is
computed based on the ranked list of sites. The running sum increases for each site
sj∈ Si (i.e., sj is a known substrate of ki), and decreases for each site sj∉ Si (i.e., sj is
not a known substrate of ki). The maximum deviation of this running sum from
zero is used as the enrichment score of a kinase. The statistical significance of this
enrichment score is assessed using a permutation test. Namely, fold changes of sites
are permuted 10,000 times and enrichment scores are computed for each. The p
value for a kinase is then computed as the number of permutations with higher
enrichment score than observed. As the predicted activity of a kinase, −log10 of
this p value is used.

Phospho-proteomics data preprocessing. Following the footsteps of previous
studies18,39, we apply some quality control steps to the phospho-proteomics data
that is used for benchmarking: (i) we restrict the analysis to mono-phosphorylated
peptides that are mapped to canonical transcripts of Ensembl, (ii) we average the
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log-fold changes of technical replicates, as well as peptides that are mapped to the
same Ensembl position (even if the exact peptides sequences are not identical), and
(iii) we filter out the peptides that are identified in only a single study to reduce the
amount of false–positive phosphosites, (iv) we restrict the analysis to perturbations
in the gold standard with >1000 phosphosite identifications (which leaves 81
perturbations). Finally, we exclude a hybrid perturbation (i.e., a mixture of both an
activator and an inhibitor) from our analysis. As a result of these steps, we obtain
53,636 sites identified in at least one of 80 perturbations. For these 80 perturba-
tions, there are 128 kinase-perturbation annotations for 25 different kinases.

Computing benchmarking metric (top-k-hit). To compute the Phit(k) metric
(read “top-k-hit”), we apply the following procedure:

1. For each perturbation separately, we rank the kinases based on their
absolute activities predicted by the inference method.

2. For each perturbation, we consider the top k kinases with highest predicted
activity and compare them with the “true” perturbed kinases in gold
standard.

3. If any of the top k kinases is a true kinase (i.e., a kinase that is perturbed in
the experiment), we consider the inference method to be successful (i.e., a
hit) for that perturbation.

4. We compute the percentage of perturbations with successful predictions and
report this quantity as Phit(k). Since the gold standard dataset is incomplete,
Phit(k) metric serves as a minimum bound on the expected probability of
discovering an upregulated or downregulated kinase if top k kinases
predicted by the inference method were to be experimentally validated.

Robust kinase activity inference
Heterogeneous network model. RoKAI uses a heterogeneous network model in
which nodes represent kinases and/or phosphosites. The edges in this network
represent different types of functional association between kinases, between
phosphosites, and between kinases and phosphosites. Namely, RoKAI’s functional
network consists of the following types of edges:

● Kinase–substrate associations: an edge between a kinase ki and site sj indicates
that ki phosphorylates sj. These kinase–substrate associations obtained from
PhosphositePlus32, representing 3877 associations between 261 kinases and
2397 sites.

● Structure distance evidence: this type of edge between phosphosites si and sj
represents the similarity of si and sj on the protein structure. We obtain
structure distance evidence from PTMcode33, which contains 7821
unweighted edges between 8842 distinct sites. Note that, in this network, a
large portion of the edges (7037 edges) are intra-protein.

● Coevolution evidence: this type of edge between phosphosites si and sj
indicates that the protein sequences straddling si and sj exhibit significant
coevolution. We obtain this coevolution network from PTMcode which
contains 178,029 unweighted edges between 19,122 distinct sites. After
filtering the sites for rRCS ≥ 0.9 provided by PTMcode, 41,799 edges between
8342 distinct sites remain. Note that, 3516 of these edges overlap with the
structural distance network. Thus, when coevolution and structural distance
networks are used together, these 3516 overlapping edges are considered to
have a weight of 2.

● PPI: an edge between kinases ki and kinase kj represents a PPI between ki and
kj. We use the PPI network obtained from STRING34. As the edge weights, we
utilize the combined scores provided by STRING. Overall, the kinase–kinase
interaction network contains 13,031 weighted edges (weights ranging from 0
to 1) between 255 distinct kinases.

Network propagation. Let GðV; EÞ represent RoKAI’s heterogeneous functional
network, where V ¼ K ∪ S and E contains four types of edges as described above.
To propagate phosphorylation levels of sites over G, we utilize an electric circuit
model (illustrated in Fig. 1). In this model, each node ni 2 V (kinase or phos-
phosite) has a node potential vi. Each edge eij 2 E (which can be a kinase–substrate
association, kinase–kinase interaction or association between a pair of phospho-
sites) has a conductance cij that allows some portion of the node potential vi of
node ni to be transferred to node nj in the form of a current Iij:

Iij ¼ vi � vj
� �

cij ð6Þ

As seen in the equation, the current Iij carried by an edge is proportional to its
condundance and the difference in node potentials. In our model, we use the
weights available in the corresponding networks to assign conductance values to
the edges.

We model the phosphorylation level of a site sj that is identified in the
experiment as a current source Ij= qj connected to the reference node
(representing the control sample) with a unit conductance. This ensures that the
node potential vj of site sj is equal to its phosphorylation level qj, if it is not
connected to any other nodes. This is because the current incoming to a node is

always equal to its outgoing current:

Incoming current ¼ Outgoing current

qi ¼ vi þ
X
ði;jÞ2E

ðvi � vjÞcij; if ni has quantification

0 ¼
X
ði;jÞ2E

ðvi � vjÞcij; if ni does not have quantification

ð7Þ

Observe that, in this model, the nodes without measured phosphorylation levels
(sites that are not identified in an MS run or kinases) act as a bridge for connecting
(and transferring phosphorylation levels between) other nodes. This is an
important feature of RoKAI as it allows incorporation of unidentified phosphosites
in the network model.

To compute the node potentials for all nodes in the network, we represent Eq.
(7) as a linear system:

Cv ¼ b ð8Þ

Cij ¼
1 if i ¼ j and ni has quantification

cij if i≠j and ninj 2 E
0 otherwise

8><
>:

9>=
>; ð9Þ

bi ¼
qi if ni has quantification

0 otherwise

� �
ð10Þ

Thus, the node potentials v can be computed using linear algebra as follows:

v ¼ ðC>CÞ�1
C>b ð11Þ

Note that, to make the matrix inversion numerically stable, we add a small τ= 10−8

to the diagonals of the matrix C.
Once node potentials are computed, we output the propagated phosphorylation

levels for identified sites as:

q̂j ¼ vj: ð12Þ
These propagated phosphorylation levels q̂j are used as input to kinase activity
inference algorithms to obtain the inferred activity of kinases.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We obtain the benchmarking data from publicly available datasets of previous
studies18,39 (http://phosfate.com/download.html). We obtain the kinase–substrate
annotations from PhosphositePlus32 (http://www.phosphosite.org/staticDownloads). We
obtain the human protein–protein interaction network from STRING34 (http://string-db.
org/cgi/download.pl). We obtain the coevolution and structure distance evidence
between phosphosites from PTMcode33 (http://ptmcode.embl.de/data.cgi). We obtain
the predicted kinase–substrates edges by NetworKin28 (https://networkin.info/download.
shtml). The materials (code and data) to reproduce the results are available in figshare
(https://doi.org/10.6084/m9.figshare.12644864).

Code availability
The source code of RoKAI and the custom scripts used for the analyses in Matlab are
available online (https://github.com/serhan-yilmaz/RoKAI, http://compbio.case.edu/
omics/software/rokai).
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