31 research outputs found

    Exploring the physiological correlates of chronic mild traumatic brain injury symptoms

    Get PDF
    We report on the results of a multimodal imaging study involving behavioral assessments, evoked and resting-state BOLD fMRI, and DTI in chronic mTBI subjects. We found that larger task-evoked BOLD activity in the MT+/LO region in extra-striate visual cortex correlated with mTBI and PTSD symptoms, especially light sensitivity. Moreover, higher FA values near the left optic radiation (OR) were associated with both light sensitivity and higher BOLD activity in the MT+/LO region. The MT+/LO region was localized as a region of abnormal functional connectivity with central white matter regions previously found to have abnormal physiological signals during visual eye movement tracking (Astafiev et al., 2015). We conclude that mTBI symptoms and light sensitivity may be related to excessive responsiveness of visual cortex to sensory stimuli. This abnormal sensitivity may be related to chronic remodeling of white matter visual pathways acutely injured

    Test-retest reliability of fMRI-measured brain activity during decision making under risk

    Get PDF
    Neural correlates of decision making under risk are being increasingly utilized as biomarkers of risk for substance abuse and other psychiatric disorders, treatment outcomes, and brain development. This research relies on the basic assumption that fMRI measures of decision making represent stable, trait-like individual differences. However, reliability needs to be established for each individual construct. Here we assessed long-term test-retest reliability (TRR) of regional brain activations related to decision making under risk using the Balloon Analogue Risk Taking task (BART) and identified regions with good TRRs and familial influences, an important prerequisite for the use of fMRI measures in genetic studies. A secondary goal was to examine the factors potentially affecting fMRI TRRs in one particular risk task, including the magnitude of neural activation, data analytical approaches, different methods of defining boundaries of a region, and participant motion. For the average BOLD response, reliabilities ranged across brain regions from poor to good (ICCs of 0 to 0.8, with a mean ICC of 0.17) and highest reliabilities were observed for parietal, occipital, and temporal regions. Among the regions that were of a priori theoretical importance due to their reported associations with decision making, the activation of left anterior insula and right caudate during the decision period showed the highest reliabilities (ICCs of 0.54 and 0.63, respectively). Among the regions with highest reliabilities, the right fusiform, right rostral anterior cingulate and left superior parietal regions also showed high familiality as indicated by intrapair monozygotic twin correlations (ranging from 0.66 to 0.69). Overall, regions identified by modeling the average BOLD response to a specific event type (rather than its modulation by a parametric regressor), regions including significantly activated vertices (compared to a whole parcel), and regions with greater magnitude of task-related activations showed greater reliabilities. Participant motion had a moderate negative effect on TRR. Regions activated during decision period rather than outcome period of risky decisions showed the greatest TRR and familiality. Regions with reliable activations can be utilized as neural markers of individual differences or endophenotypes in future clinical neuroscience and genetic studies of risk-taking

    Test-retest reliability of neural correlates of response inhibition and error monitoring: An fMRI study of a stop-signal task

    Get PDF
    Response inhibition (RI) and error monitoring (EM) are important processes of adaptive goal-directed behavior, and neural correlates of these processes are being increasingly used as transdiagnostic biomarkers of risk for a range of neuropsychiatric disorders. Potential utility of these purported biomarkers relies on the assumption that individual differences in brain activation are reproducible over time; however, available data on test-retest reliability (TRR) of task-fMRI are very mixed. This study examined TRR of RI and EM-related activations using a stop signal task in young adults

    Reliability and stability challenges in ABCD task fMRI data

    Get PDF
    Trait stability of measures is an essential requirement for individual differences research. Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, such as attempts to relate task related brain activation to individual differences in behavior and psychopathology. However, recent research using adult samples has questioned the trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait stability of task fMRI in children. Here, we examined within-session reliability and long-term stability of individual differences in task-fMRI measures using fMRI measures of brain activation provided by the adolescent brain cognitive development (ABCD) Study Release v4.0 as an individual\u27s average regional activity, using its tasks focused on reward processing, response inhibition, and working memory. We also evaluated the effects of factors potentially affecting reliability and stability. Reliability and stability (quantified as the ratio of non-scanner related stable variance to all variances) was poor in virtually all brain regions, with an average value of 0.088 and 0.072 for short term (within-session) reliability and long-term (between-session) stability, respectively, in regions of interest (ROIs) historically-recruited by the tasks. Only one reliability or stability value in ROIs exceeded the \u27poor\u27 cut-off of 0.4, and in fact rarely exceeded 0.2 (only 4.9%). Motion had a pronounced effect on estimated reliability/stability, with the lowest motion quartile of participants having a mean reliability/stability 2.5 times higher (albeit still \u27poor\u27) than the highest motion quartile. Poor reliability and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, consequently, statistical power for the detection of brain-behavior associations. This essential issue urgently needs to be addressed through optimization of task design, scanning parameters, data acquisition protocols, preprocessing pipelines, and data denoising methods

    Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI

    Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex

    Get PDF
    BACKGROUND: The early visual areas have a clear topographic organization, such that adjacent parts of the cortical surface represent distinct yet adjacent parts of the contralateral visual field. We examined whether cortical regions outside occipital cortex show a similar organization. METHODOLOGY/PRINCIPAL FINDINGS: The BOLD responses to discrete visual field locations that varied in both polar angle and eccentricity were measured using two different tasks. As described previously, numerous occipital regions are both selective for the contralateral visual field and show topographic organization within that field. Extra-occipital regions are also selective for the contralateral visual field, but possess little (or no) topographic organization. A regional analysis demonstrates that this weak topography is not due to increased receptive field size in extra-occipital areas. CONCLUSIONS/SIGNIFICANCE: A number of extra-occipital areas are identified that are sensitive to visual field location. Neurons in these areas corresponding to different locations in the contralateral visual field do not demonstrate any regular or robust topographic organization, but appear instead to be intermixed on the cortical surface. This suggests a shift from processing that is predominately local in visual space, in occipital areas, to global, in extra-occipital areas. Global processing fits with a role for these extra-occipital areas in selecting a spatial locus for attention and/or eye-movements

    Comment on "Modafinil Shifts Human Locus Coeruleus to Low-Tonic, High-Phasic Activity During Functional MRI" and "Homeostatic Sleep Pressure and Responses to Sustained Attention in the Suprachiasmatic Area"

    No full text
    Two recently published studies, (1) and (2), report blood oxygenation level dependent (BOLD) responses in the human locus coeruleus (LC). Here we show that these LC responses do not correspond to the anatomical location of the LC, and present cautionary data concerning the quality of BOLD signals measured from the LC using standard fMRI acquisition parameters

    Right TPJ Deactivation during Visual Search: Functional Significance and Support for a Filter Hypothesis

    No full text
    Behavioral performance depends on attending to important objects in the environment rather than irrelevant objects. Regions in the right temporal--parietal junction (TPJ) are thought to be involved in redirecting attention to new objects that are behaviorally relevant. When subjects monitor a stream of distracter objects for a target, TPJ deactivates until the target is detected. We have proposed that the deactivation reflects the filtering of irrelevant inputs from TPJ, preventing unimportant objects from being attended. This hypothesis predicts that the mean deactivation to distracters should be larger when the subsequent target is detected than missed, reflecting more efficient filtering. An analysis of the blood oxygenation level--dependent (BOLD) task-evoked signals from 20 subjects during 2 monitoring tasks confirmed this prediction for regions in right supramarginal gyrus (SMG). Because the deactivation preceded the target, this mean BOLD-detection relationship did not reflect feedback from target detection or postdetection processes. The SMG regions showing this relationship overlapped or neighbored some regions associated with a ‘‘default’ ’ mode of brain function, suggesting the functional significance of deactivations in some default regions during task performance
    corecore