29 research outputs found

    Genetic analysis of populations of brown trout (Salmo trutta L.) from the Romanian Carpathians

    Get PDF
    The Carpathian Mountains are one of the most complex orogenetic areas of Europe, with unique fauna, including the brown trout (Salmo trutta). In this study we performed population genetic analysis of 12 different S. trutta populations using two types of molecular markers: nine microsatellites and mitochondrial D-loop sequences. The following working hypothesis was considered: the Romanian Carpathians and their surrounding lowlands can be key relief units based on which the S. trutta genetic diversity, spread, distribution, connectivity, relative isolation and genetic divergence can be at least partially explained. The phylogenetic analysis revealed that the majority of sequences were grouped in the Danubian clade. The high haplotype diversity of the 12 analyzed brown trout populations can be explained by the high nucleotide diversity. The microsatellite analysis revealed an inbreeding event for all the loci and for the populations analyzed. The Romanian Carpathians' shape and geographic orientation play a zoogeographical key role driving force in respect to the S. trutta populations

    Nuclear Markers of Danube Sturgeons Hybridization

    Get PDF
    Acipenseriformes are composed of 25 sturgeon species and two paddlefish species distributed exclusively in the northern hemisphere. The Danube River and the Black Sea were originally inhabited by six sturgeon species but two are extinct and only four are still reproducing currently in the Lower Danube: Huso huso, Acipenser stellatus, A. gueldenstaedtii and A. ruthenus. Sturgeon species hybridize more easily than other fish and the determination of pure species or hybrid status is important for conservation and for breeding in fish farms. This survey demonstrated that morphological determination of this status is not reliable and a molecular tool, based on eight microsatellites genotypes is proposed. This method, based on three successive statistical analyses including Factorial Correspondence Analysis (FCA), Structure assignation and NewHybrids status determination, showed a high efficiency in discriminating pure species specimens from F1, F2 and two kinds of backcross individuals involving three of the four reproducing Lower Danube sturgeon species

    Molecular analysis of phylogeographic subspecies in three Ponto-Caspian sturgeon species

    No full text
    Sturgeons (Order Acipenseriformes) represent an extremely valuable natural resource that is now facing depletion. In the current study we evaluate if the traditional classification in subspecies of Acipenser gueldenstaedtii, Acipenser stellatus and Huso huso, endemic to Ponto-Caspian region is sustained by molecular analysis and if these represent Evolutionary Significant Units (ESUs) that should be managed separately in conservation programs. To examine the classification of taxonomic entities we sequenced a fragment of the mitochondrial control region in case of three sturgeon species that inhabit the North-western of Black Sea and migrate for reproduction in the Lower Danube. Beside these sequences, we used previously published sequences from sturgeon individuals sampled in the Black Sea, Azov Sea and Caspian Sea. We determined the genetic diversity and genetic differentiation, conducted a Population Aggregation Analysis (PAA) and inferred an intraspecific molecular phylogeny and haplotype network. The results indicated a low level of genetic differentiation between the geographically designated subspecies and did not support a significant divergence or reciprocal monophyly between them. Our results confirm previous genetic studies with smaller samples sizes, but additional analyses including nuclear markers should be conducted for proper recommendations aiming at the development of conservation programs

    A Multistep DNA-Based Methodology for Accurate Authentication of Sturgeon Species

    No full text
    The sturgeons (order Acipenseriformes) are caviar producers and some of the most valuable fish species worldwide. Due to different reasons, wild populations are now at the brink of extinction. The high demand for caviar has led to the development of aquaculture for restocking and caviar production. Since the caviar from different species has different prices depending on the quality and attempts of commercial fraud based on species substitution have been found, correct species identification is more than necessary. We report a new multistep methodology for an accurate species identification based on both nuclear and mitochondrial markers. Our test integrates data from the analysis of microsatellites (Afu19, Afu34, Afu39, Afu54, Aox27, AoxD234, AnacC11 and AnacE4), nuclear gene markers (RPS7, vimentin and rhodopsin) and mtDNA barcoding to give a reliable molecular diagnostic for five sturgeon species (Huso huso, Acipenser stellatus, Acipenser ruthenus, Acipenser gueldenstaedtii and Acipenser baerii). In addition to species identification, our methodology allows the identification of bester, sterbe and best beluga hybrids, but also the identification of hybrids of unknown origin. This methodology has a good potential to contribute to the conservation of highly threatened sturgeon populations and also to the traceability of their products

    Phylogenetic Relationships of the Mangalitsa Swine Breed Inferred from Mitochondrial DNA Variation

    No full text
    The Mangalitsa pig, a swine breed belonging to the protected gene fund of original and primitive animal breeds of the FAO (Food and Agriculture Organization), has been known to inhabit Romanian territories since the 19th century. The aim of this study was to compare the Mangalitsa breed with several European and Asiatic swine breeds in order to emphasize its uniqueness and to elucidate its origin. For this purpose, we analyzed a 613 bp mitochondrial DNA D-loop fragment and 1140 bp of the cytochrome b gene in a population of Mangalitsa pigs and the polymorphic sites were compared with sequences from GenBank originating from other swine breeds. Taking into account the total of 24 breeds and 5 different Wild Boar populations analyzed, 86 polymorphic sites representing 32 haplotypes were observed, with an average percentage of polymorphic sites of 4.9%. Three Neighbor-Joining phylogenetic trees were constructed based on Kimura 2-parameter distances, using D-loop, cytochrome b and mitochondrial reunited sequences. For the analyzed Mangalitsa population, four distinct haplotypes were identified, including one that was common to other breeds. Our study suggests that the Mangalitsa swine originate from primitive breeds which might be directly derived from the Wild Boar
    corecore