30 research outputs found
Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model
The introduction of two-photon polymerization (TPP) into the area of Carbon Micro Electromechanical Systems (CMEMS) has enabled the fabrication of three-dimensional glassy carbon nanostructures with geometries previously unattainable through conventional UV lithography. Pyrolysis of TPP structures conveys a characteristic reduction of feature size—one that should be properly estimated in order to produce carbon microdevices with accuracy. In this work, we studied the volumetric shrinkage of TPP-derived microwires upon pyrolysis at 900 °C. Through this process, photoresist microwires thermally decompose and shrink by as much as 75%, resulting in glassy carbon nanowires with linewidths between 300 and 550 nm. Even after the thermal decomposition induced by the pyrolysis step, the linewidth of the carbon nanowires was found to be dependent on the TPP exposure parameters. We have also found that the thermal stress induced during the pyrolysis step not only results in axial elongation of the nanowires, but also in buckling in the case of slender carbon nanowires (for aspect ratios greater than 30). Furthermore, we show that the calculated residual mass fraction that remains after pyrolysis depends on the characteristic dimensions of the photoresist microwires, a trend that is consistent with several works found in the literature. This phenomenon is explained through a semi-empirical model that estimates the feature size of the carbon structures, serving as a simple guideline for shrinkage evaluation in other designs
Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a particular coronavirus strain responsible for the coronavirus disease 2019 (COVID-19), accounting for more than 3.1 million deaths worldwide. Several health-related strategies have been successfully developed to contain the rapidly-spreading virus across the globe, toward reduction of both disease burden and infection rates. Particularly, attention has been focused on either the development of novel drugs and vaccines, or by adapting already-existing drugs for COVID-19 treatment, mobilizing huge efforts to block disease progression and to overcome the shortage of effective measures available at this point. Areas covered: This perspective covers the breakthrough of multifunctional biomimetic cell membrane-based nanoparticles as next-generation nanosystems for cutting-edge COVID-19 therapeutics and vaccination, specifically cell membrane-derived nanovesicles and cell membrane-coated nanoparticles, both tailorable cell membrane-based nanosystems enriched with the surface repertoire of native cell membranes, toward maximized biointerfacing, immune evasion, cell targeting and cell-mimicking properties. Expert opinion: Nano-based approaches have received widespread interest regarding enhanced antigen delivery, prolonged blood circulation half-life and controlled release of drugs. Cell membrane-based nanoparticles comprise interesting antiviral multifunctional nanoplatforms for blocking SARS-CoV-2 binding to host cells, reducing inflammation through cytokine neutralization and improving drug delivery toward COVID-19 treatment
Fundamentals of MALDI-ToF-MS analysis: applications in bio-diagnosis, tissue engineering and drug delivery
This book presents the fundamentals and applications of Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) technique. It highlights the basic principles, the history of invention as well as the mechanism of ionization and mass determination using this technique. It describes the fundamental principles and methods for MALDI spectra interpretation and determination of exact chemical structures from experimental data. This book guides the reader through the interpretation of MALDI data where complex macromolecular spectra are simplified in order to present the major principles behind data interpretation. In addition, each chapter describes how MALDI-ToF-MS analysis provides necessary understanding of the copolymer systems that have been designed for specialized biomedical applications
Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).
A wide range of carbon sources are available in nature, with a variety of micro-/nanostructure configurations. Here, a novel technique to fabricate long and hollow glassy carbon microfibers derived from human hairs is introduced. The long and hollow carbon structures were made by the pyrolysis of human hair at 900 °C in a N2 atmosphere. The morphology and chemical composition of natural and pyrolyzed human hairs were investigated using scanning electron microscopy (SEM) and electron-dispersive X-ray spectroscopy (EDX), respectively, to estimate the physical and chemical changes due to pyrolysis. Raman spectroscopy was used to confirm the glassy nature of the carbon microstructures. Pyrolyzed hair carbon was introduced to modify screen-printed carbon electrodes ; the modified electrodes were then applied to the electrochemical sensing of dopamine and ascorbic acid. Sensing performance of the modified sensors was improved as compared to the unmodified sensors. To obtain the desired carbon structure design, carbon micro-/nanoelectromechanical system (C-MEMS/C-NEMS) technology was developed. The most common C-MEMS/C-NEMS fabrication process consists of two steps: (i) the patterning of a carbon-rich base material, such as a photosensitive polymer, using photolithography; and (ii) carbonization through the pyrolysis of the patterned polymer in an oxygen-free environment. The C-MEMS/NEMS process has been widely used to develop microelectronic devices for various applications, including in micro-batteries, supercapacitors, glucose sensors, gas sensors, fuel cells, and triboelectric nanogenerators. Here, recent developments of a high-aspect ratio solid and hollow carbon microstructures with SU8 photoresists are discussed. The structural shrinkage during pyrolysis was investigated using confocal microscopy and SEM. Raman spectroscopy was used to confirm the crystallinity of the structure, and the atomic percentage of the elements present in the material before and after pyrolysis was measured using EDX
A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications
Recommended from our members
Wireless Electrochemical Detection on a Microfluidic Compact Disc (CD) and Evaluation of Redox-Amplification during Flow.
Novel biomarkers and lower limits of detection enable improved diagnostics. In this paper we analyze the influence of flow on the lower limit of electrochemical detection on a microfluidic Compact Disc (CD). Implementing wireless transfer of data reduces noise during measurements and allows for real time sensing, demonstrated with the ferri-ferroyanide redox-couple in single and dual mode cyclic voltammetry. The impact of flow on redox-amplification and electrode integration for the lowest limit of detection are discussed
Wireless Electrochemical Detection on a Microfluidic Compact Disc (CD) and Evaluation of Redox-Amplification during Flow
Novel biomarkers and lower limits of detection enable improved diagnostics. In this paper we analyze the influence of flow on the lower limit of electrochemical detection on a microfluidic Compact Disc (CD). Implementing wireless transfer of data reduces noise during measurements and allows for real time sensing, demonstrated with the ferri-ferroyanide redox-couple in single and dual mode cyclic voltammetry. The impact of flow on redox-amplification and electrode integration for the lowest limit of detection are discussed
Recommended from our members
Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review.
The use of multiphase flows in microfluidics to carry dispersed phase material (droplets, particles, bubbles, or fibers) has many applications. In this review paper, we focus on such flows on centrifugal microfluidic platforms and present different methods of dispersed phase material generation. These methods are classified into three specific categories, i.e., step emulsification, crossflow, and dispenser nozzle. Previous works on these topics are discussed and related parameters and specifications, including the size, material, production rate, and rotational speed are explicitly mentioned. In addition, the associated theories and important dimensionless numbers are presented. Finally, we discuss the commercialization of these devices and show a comparison to unveil the pros and cons of the different methods so that researchers can select the centrifugal droplet/particle generation method which better suits their needs
Recommended from our members
Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review.
The use of multiphase flows in microfluidics to carry dispersed phase material (droplets, particles, bubbles, or fibers) has many applications. In this review paper, we focus on such flows on centrifugal microfluidic platforms and present different methods of dispersed phase material generation. These methods are classified into three specific categories, i.e., step emulsification, crossflow, and dispenser nozzle. Previous works on these topics are discussed and related parameters and specifications, including the size, material, production rate, and rotational speed are explicitly mentioned. In addition, the associated theories and important dimensionless numbers are presented. Finally, we discuss the commercialization of these devices and show a comparison to unveil the pros and cons of the different methods so that researchers can select the centrifugal droplet/particle generation method which better suits their needs