3 research outputs found

    Advanced Modes of Mechanical Ventilation

    Get PDF
    Advanced modes of mechanical ventilation emerged from the need for better control of the ventilator by the patient, the possibility of respiratory mechanics and respiratory drive monitoring in assisted modes and a better patient-ventilator synchrony. Volume-assured pressure support ventilation (VAPSV) has the advantage of the variable of flow pressure support ventilation (PSV) assuring tidal volume in each respiratory cycle. Proportional assist ventilation plus (PAV+) delivers assistance in proportion of inspiratory efforts while monitoring work of breathing, respiratory compliance, resistance and auto-PEEP, improving patient-ventilator asynchrony. Neurally adjusted ventilatory assist ventilation (NAVA) provides diaphragmatic electroactivity information and a better inspiratory and expiratory patient-ventilator synchrony. Adaptative support ventilation (ASV) assures a pre-set minute ventilation adjusting Pressure Support according to respiratory rate. Intellivent-ASV adds SpO2 and PETCO2 monitoring to adjust minute ventilation and PEEP/FIO2 according to lung pathology. Smart-Care ventilation provides an algorithm that decreases PSV according to patients tidal volume, respiratory rate and ETCO2 according to lung pathology and performs a spontaneous breathing trial indicating the redness for extubation. Clinical indications of advanced modes are to improve patient-ventilator synchrony and provide better respiratory monitoring in the assisted modes of mechanical ventilation

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Brazilian recommendations of mechanical ventilation 2013. Part 2

    No full text
    O suporte ventilatório artificial invasivo e não invasivo ao paciente crítico tem evoluído e inúmeras evidências têm surgido, podendo ter impacto na melhora da sobrevida e da qualidade do atendimento oferecido nas unidades de terapia intensiva no Brasil. Isto posto, a Associação de Medicina Intensiva Brasileira (AMIB) e a Sociedade Brasileira de Pneumologia e Tisiologia (SBPT) - representadas pelo seus Comitê de Ventilação Mecânica e Comissão de Terapia Intensiva, respectivamente, decidiram revisar a literatura e preparar recomendações sobre ventilação mecânica objetivando oferecer aos associados um documento orientador das melhores práticas da ventilação mecânica na beira do leito, baseado nas evidencias existentes, sobre os 29 subtemas selecionados como mais relevantes no assunto. O projeto envolveu etapas visando distribuir os subtemas relevantes ao assunto entre experts indicados por ambas as sociedades que tivessem publicações recentes no assunto e/ou atividades relevantes em ensino e pesquisa no Brasil na área de ventilação mecânica. Esses profissionais, divididos por subtemas em duplas, responsabilizaram-se por fazer revisão extensa da literatura mundial sobre cada subtema. Reuniram-se todos no Forum de Ventilação Mecânica na sede da AMIB em São Paulo, em 03 e 04 de agosto de 2013 para finalização conjunta do texto de cada subtema e apresentação, apreciação, discussão e aprovação em plenária pelos 58 participantes, permitindo a elaboração de um documento final
    corecore