9 research outputs found

    Radio Frequency MRI coils and safety: how infrared thermography can support quality assurance

    Get PDF
    Abstract Background The safety controls in Resonance Magnetic Imaging (MRI) diagnostic site are numerous and complex. Some of these are contained in international directives and regularly conducted by medical physics expert after acceptance tests, consisting of a series of checks, measurements, evaluations called quality controls (QCs) and made to guarantee the image quality of the equipment. In this context, ensuring that the coils are in proper operating conditions is important to prevent and reduce errors in use and to preserve patient safety. Results A study by thermography was conducted to evaluate temperature changes of MRI coils during Quality Control (QC), in order to prevent any problems for the patient due to Radio Frequency waves. This experiment involves use of a thermal camera to detect temperature variations during MRI scans using head and body coils of two different tomography 1.5 T and 3.0 T static magnetic field. Thermal camera was positioned inside the MRI room to acquire images every 15 s for all the scansions duration. The observations have shown a temperature increase only for body coil of 1.5 MRI tomography, whereas no significative temperature variation has occurred for the other coils under observation. This temperature increase was later related to a fault of such coil. Conclusions The authors believe this simple method useful as first approach, during routinely QCs, to verify coils functioning and so to avoid patient hazards and are preparing a methodological study about functioning of the coils with respect to their temperature variation

    The Use of TECAR Therapy on Meibomitis Disease and Optical Nerve Flow

    No full text
    Meibomitis is an ocular disease which leads to a dysfunction of the meibomian glands. This ophthalmologic disease may cause severe pain and obvious vision loss. The therapeutic protocol used in the treatment of this pathology consists in local and systemic antibiotic therapy. The results obtained using this approach are scarce and, in many cases, result in adverse events. In this study, we propose an alternative and original approach using TECAR therapy in the treatments of meibomitis disease. The endogenous heat produced by the TECAR device produced beneficial effects from both a histological and anatomical point of view. Different parameters (TBUT, interferometry, tear meniscus height, meibography and OCTA) were evaluated before the TECAR treatments, immediately afterwards, and 15 days after the end of the treatments. The obtained results suggest a new possible use of TECAR therapy on ophthalmological patients, opening an innovative scenario in a non-invasive manner

    An Alternative Approach to Cataract Surgery Using BSS Temperature of 2.7 °C

    No full text
    The aim of this study is to evaluate the difference in the number of endothelial cells after cataract operations with phacoemulsification by using a balanced salt solution (BSS) at standard temperature (about 20 °C) and at 2.7 °C. Two groups, comprising 214 individuals in total, participated in this study; patients were operated on using BSS bottle at about 20 °C and 2.7 °C in the first and second groups, respectively. All operations were conducted by the same surgeon and in similar conditions. One month after the operations, endothelial cells in the two groups were checked. For patients in Group 2, an important reduction in the loss of endothelial cells was observed

    Charging the macroeconomy with an energy sector: an agent-based model

    No full text
    The global energy crisis that began in fall 2021 and the following spike in energy price constitute a major challenge for the world economy which risks undermining the post-COVID-19 recovery. In this paper, we develop and validate a new macroeconomic agent-based model with an endogenous energy sector to analyse the role of energy in the functioning of a complex adaptive system and assess the effects of energy shocks on the economic dynamics. The economic system is populated by heterogeneous agents, i.e., households, firms and banks, who take optimal decision rules and interact in decentralized markets characterized by limited information. After calibrating the model on US quarterly macroeconomic data, we investigate the economic and distributional effects of different types of energy shocks, that is an exogenous increase in the price of natural resources such as oil or gas and a decrease in the energy firms' productivity. We find that whereas the two energy shocks entail similar effects at the aggreagate level, the distribution of gains and losses across sectors is largely driven by the subsequent impact on the relative energy price, which varies depending on the type of shock. Our results suggest that, in order to design effective measures in response to energy crises, policymakers need to carefully take into account the nature of energy shocks and the resulting distributional effects

    Use of Surface Electromyography to Estimate End-Point Force in Redundant Systems: Comparison between Linear Approaches

    Get PDF
    Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e., multi-collinearity. This study compared the EMG-to-force mapping estimation performed with standard multiple linear regression and with three other algorithms designed to reduce different sources of the detrimental effects of multi-collinearity: Ridge Regression, which performs an L2 regularization through a penalty term; linear regression with constraints from foreknown anatomical boundaries, derived from a musculoskeletal model; linear regression of a reduced number of muscular degrees of freedom through the identification of muscle synergies. Two datasets, both collected during the exertion of submaximal isometric forces along multiple directions with the upper limb, were exploited. One included data collected across five sessions and the other during the simultaneous exertion of force and generation of different levels of co-contraction. The accuracy and consistency of the EMG-to-force mappings were assessed to determine the strengths and drawbacks of each algorithm. When applied to multiple sessions, Ridge Regression achieved higher accuracy (R2 = 0.70) but estimations based on muscle synergies were more consistent (differences between the pulling vectors of mappings extracted from different sessions: 67%). In contrast, the implementation of anatomical constraints was the best solution, both in terms of consistency (R2 = 0.64) and accuracy (74%), in the case of different co-contraction conditions. These results may be used for the selection of the mapping between EMG and force to be implemented in myoelectrically controlled robotic devices

    Irradiation with Polychromatic Incoherent Low Energy Radiation of Human Peripheral Blood Mononuclear Cells In Vitro: Effects on Cytokine Production

    No full text
    (1) Background: Physical stimuli may activate peripheral blood mononuclear cells (PBMCs) to secrete cytokines, which may favor pro-inflammatory responses or trigger reparative phenomena. The purpose of this study is to evaluate the action of Polarized Polychromatic Incoherent Low Energy Radiation (PILER) on human in vitro PBMCs, by detection of the possible effects on cytokine production; (2) Methods: isolated PBMCs were irradiated with a PILER lamp at different exposure times, at a distance of 10 cm, before incubation. The supernatants were collected after 24 h and 48 h and cytokines evaluated by ELISA; (3) Results: Our results showed a decrease in the levels of pro-inflammatory IL-12p70, IL-17A, IFN-γ, and TNF-α cytokines, whereas IL-10 and TGF-β1 with regulatory activity increased; (4) Conclusions: PILER irradiation affected the cytokine production by isolated PBMCs driving the immune response toward an anti-inflammatory/reparative profile

    Simultaneous Control of Natural and Extra Degrees-of-Freedom by Isometric Force and EMG Null Space Activation

    No full text
    Myoelectric signals allow to control prostheses and exoskeletons intuitively and effectively by estimating movement intention from the activation of multiple muscles. However, not all muscle activation patterns generate movements, because of the redundancy of the musculoskeletal system. Therefore, such “null space” activations could be used to control extra degrees-of-freedom while simultaneously performing a task. Here, we tested the feasibility of this approach by instructing participants to match the position and orientation of an ellipsoidal target by displacing and rotating an ellipsoidal cursor through the generation of isometric force and electromyographic null space activation. Participants were able to perform the task and their performance improved with practice. However, there was a large variability across participants in their ability to hold the cursor within the target. These results support the feasibility of null space control and suggest that task difficulty must be optimized according to the individual control ability
    corecore