2,421 research outputs found

    Evaluation of the effectiveness of business-processes in international e-commerce system

    Get PDF

    Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    Get PDF
    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function

    Twin-photon techniques for fiber measurements

    Full text link
    The potential of twin photons generated by parametric down-conversion for metrological applications are discussed. We present several experimental results like the measurement of chromatic dispersion and polarization mode dispersion in optical fibers.Comment: 6 pages, 5 figures, Invited paper for the Symposium on Optical Fiber Measurements, sponsored by NIST, Boulder, Co, September 15-17, 199

    Discrimination and synthesis of recursive quantum states in high-dimensional Hilbert spaces

    Full text link
    We propose an interferometric method for statistically discriminating between nonorthogonal states in high dimensional Hilbert spaces for use in quantum information processing. The method is illustrated for the case of photon orbital angular momentum (OAM) states. These states belong to pairs of bases that are mutually unbiased on a sequence of two-dimensional subspaces of the full Hilbert space, but the vectors within the same basis are not necessarily orthogonal to each other. Over multiple trials, this method allows distinguishing OAM eigenstates from superpositions of multiple such eigenstates. Variations of the same method are then shown to be capable of preparing and detecting arbitrary linear combinations of states in Hilbert space. One further variation allows the construction of chains of states obeying recurrence relations on the Hilbert space itself, opening a new range of possibilities for more abstract information-coding algorithms to be carried out experimentally in a simple manner. Among other applications, we show that this approach provides a simplified means of switching between pairs of high-dimensional mutually unbiased OAM bases

    Ferroelectricity in the Magnetic E-Phase of Orthorhombic Perovskites

    Full text link
    We show that the symmetry of the spin zigzag chain E phase of the orthorhombic perovskite manganites and nickelates allows for the existence of a finite ferroelectric polarization. The proposed microscopic mechanism is independent of spin-orbit coupling. We predict that the polarization induced by the E-type magnetic order can potentially be enhanced by up to two orders of magnitude with respect to that in the spiral magnetic phases of TbMnO3 and similar multiferroic compounds.Comment: 4 pages, 2 figures, somewhat changed emphases, accepted to PR
    corecore