34 research outputs found

    Electrostatic effects in coupled quantum dot-point contact-single electron transistor devices

    Get PDF
    We study the operation of a system where quantum dot (QD) and point contact (PC) defined in a two-dimensional electron gas of a high-mobility GaAs/AlGaAs heterostructure are capacitively coupled to each other and to metallic single electron transistor (SET). The charge state of the quantum dot can be probed by the point contact or single electron transistor. These can be used for sensitive detection of terahertz radiation. In this work, we explore an electrostatic model of the system. From the model, we determine the sensitivity of the point contact and the single electron transistor to the charge excitation of the quantum dot. Nearly periodic oscillations of the point contact conductance are observed in the vicinity of pinch-off voltage. They can be attributed to Coulomb blockade effect in a quasi-1D channel because of unintentional formation of small quantum dot. The latter can be a result of fluctuations in GaAs quantum well thickness

    Nearly perfect routing of chiral light by plasmonic grating on slab waveguide

    Full text link
    Grating couplers are widely used to couple waveguide modes with the far field. Their usefulness is determined not only by energy efficiency but also by additional supported functionality. In this paper, we demonstrate a plasmonic grating on a silicon nitride slab waveguide that couples both TE and TM waveguide modes with circularly polarized light in the far field. Specifically, we experimentally confirmed that circularly polarized light excites TE and TM modes propagating in opposite directions, and the direction is controlled by the handedness. The routing efficiency for normally incident light reaches up to 95%. The same structure operates in the outcoupling regime as well, demonstrating up to 97% degree of circular polarization, where the handedness is determined by the polarization and propagation direction of outcoupled modes. Our results pave the way for the realization of polarization-division multiplexers and demultiplexers, integrated circular polarization emitters, as well as detectors of the polarization state of the incident optical field

    ESTIMATED JUSTIFICATION OF TECHNICAL DECISION ON STRENGTHENING REINFORCED CONCRETE MACHINE HALL FLOOR

    Get PDF
    Introduction. In connection with the long-term operation of hydraulic structures (HPP), the installation of significant temporary loads, the presence of alternating effects on individual structural elements, it is possible to reduce the carrying capacity and strength of reinforced concrete structures. One of the most crucial elements is the reinforced concrete overlap of the machine hall, the work presents field and design studies, a proposal to strengthen the structures with external reinforcement. Materials and methods. The scientific and technical documentation was analyzed, instrumental studies and visual inspections of the state of the structures were carried out, and a 3D mathematical model was developed based on the finite element method. Multivariate non-linear computational studies of the actual stress-strain state of structures have been carried out. Results. Conducted visual and instrumental examination showed the presence of cracking on the lower edge of the reinforced concrete floor of the machine room. The simulation of the actual state of the structures has been carried out; according to the results of calculations, a schematic diagram of the gain of structures has been proposed. Conclusions. As a result of computational studies of stress-strain state, the occurrence of cracks on the lower edge of reinforced concrete floor of the machine hall was confirmed. When applying temporary technological loads to overlap, it is possible to achieve the yield strength of the reinforcement in certain zones. In order to ensure further safe operation of the structures, a conceptual amplification scheme based on the results of stress-strain state calculations has been proposed

    DEVELOPMENT OF A BRAND PROMOTION STRATEGY: MANAGEMENT ACCOUNTING AND COMPREHENSIVE ANALYSIS

    Get PDF
    Development of measures for management accounting, brand management and promotion is one of the main problems of processing and trading enterprises. In management accounting, interest in the formation and management of trademarks (brand) in Russia is growing every year, since well-known trademarks are becoming a prerequisite for a firm's stable position in the market, a factor in its competitiveness. We understand the brand as a subjective image in the minds of consumers, denoted by the brand, consisting of a consistent set of promises to the target consumer and creating a sustainable competitive advantage compared to non-branded products. The purpose of the study is to research and substantiate the managerial aspects of the development and promotion of the brand. The paper presents elements of management and operational accounting for the development and promotion of the brand. At the present stage of development of competitive markets, more attention should be paid to management accounting, including methods for developing and promoting trademarks (brands). In the current conditions of commodity abundance and tougher competition, the goal of brand promotion is seen as one of the important activities in an organization that has a direct impact on the financial results of the organization. The following research methods were used in the work: monographic method, dialectical method of knowledge, statistical and system approach, analysis, comparison, statistical descriptions of economic processes. Key words: management accounting, trademark, brand, strategy, products, processin

    Reflection-enhanced gain in traveling-wave parametric amplifiers

    Get PDF
    The operating principle of traveling-wave parametric amplifiers is typically understood in terms of the standard coupled mode theory, which describes the evolution of forward propagating waves without any reflections, i.e., for perfect impedance matching. However, in practice, superconducting microwave amplifiers are unmatched nonlinear finite-length devices, where the reflecting waves undergo complex parametric processes, not described by the standard coupled mode theory. Here, we present an analytical solution for the TWPA gain, which includes the interaction of reflected waves. These reflections result in corrections to the well-known results of the standard coupled mode theory, which are obtained for both three-wave and four-wave mixing processes. Due to these reflections, the gain is enhanced and unwanted nonlinear phase modulations are suppressed. Predictions of the model are experimentally demonstrated on two types of unmatched TWPA, based on coplanar waveguides with a central wire consisting of (i) a high kinetic inductance superconductor, and (ii) an array of 2000 Josephson junctions

    Terahertz imaging with a highly-sensitive quantum dot detector

    No full text
    We report on an application of photon counting detector in the sub-terahertz range of electromagnetic waves for imaging of natural and stimulated radiation emitted by free standing objects. The detector is assembled from a GaAs/AlGaAs quantum dot, electron reservoir and quantum point contact (QPC). Its operation relies on photon-to-plasmon and plasmon-to-charge conversion, followed by charge measurement in a single-shot mode. Individual photons excite plasma waves in the quantum dot, with a resonance frequency determined by the shape of the QD confining potential. The plasma wave decays subsequently by single-particle electron-hole excitations, which change the electrostatic potential stepwise in the close proximity to the QD. The potential steps are probed with the QPC operating as a sensitive electrometer. A studied object is placed on a twodimensional translating stage. Its emission is projected through an optical window onto the detector attached to a 1K cold finger in a cryostat. Subsequently translating the stage in two space directions we are able to map the distribution of the emitted radiation. The presented technique has a potential for imaging of objects passively radiated in the sub-terahertz range

    The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes

    No full text
    The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a nominal co-solvent to improve its processing into a nanofiltration membrane by phase inversion. A study of the rheology of cellulose solutions in diluted ionic liquids ([EMIM]Ac, [EMIM]Cl, and [BMIM]Ac) containing up to 75% DMSO showed the possibility of decreasing the viscosity by up to 50 times while keeping the same cellulose concentration. Surprisingly, typical cellulose non-solvents (water, methanol, ethanol, and isopropanol) behave similarly, reducing the viscosity at low doses but causing structuring of the cellulose solution and its phase separation at high concentrations. According to laser interferometry, the nature of these non-solvents affects the mass transfer direction relative to the forming membrane and the substance interdiffusion rate, which increases by four-fold when passing from isopropanol to methanol or water. Examination of the nanofiltration characteristics of the obtained membranes showed that the dilution of ionic liquid enhances the rejection without changing the permeability, while the transition to alcohols increases the permeability while maintaining the rejection

    Polytypism of Compounds with the General Formula Cs{Al2[TP6O20]} (T = B, Al): OD (Order-Disorder) Description, Topological Features, and DFT-Calculations

    Get PDF
    The crystal structures of compounds with the general formula Cs{[6]Al2[[4]TP6O20]} (where T = Al, B) display order-disorder (OD) character and can be described using the same OD groupoid family. Their structures are built up by two kinds of nonpolar layers, with the layer symmetries Pc(n)2 (L2n+1-type) and Pc(a)m (L2n-type) (category IV). Layers of both types (L2n and L2n+1) alternate along the b direction and have common translation vectors a and c (a ~ 10.0 Å, c ~ 12.0 Å). All ordered polytypes as well as disordered structures can be obtained using the following partial symmetry operators that may be active in the L2n type layer: the 21 screw axis parallel to c [– – 21] or inversion centers and the 21 screw axis parallel to a [21 – –]. Different sequences of operators active in the L2n type layer ([– – 21] screw axes or inversion centers and [21 – –] screw axes) define the formation of multilayered structures with the increased b parameter, which are considered as non-MDO polytypes. The microporous heteropolyhedral MT-frameworks are suitable for the migration of small cations such as Li+, Na+ Ag+. Compounds with the general formula Rb{[6]M3+[[4]T3+P6O20]} (M = Al, Ga; T = Al, Ga) are based on heteropolyhedral MT-frameworks with the same stoichiometry as in Cs{[6]Al2[[4]TP6O20]} (where T = Al, B). It was found that all the frameworks have common natural tilings, which indicate the close relationships of the two families of compounds. The conclusions are supported by the DFT calculation data

    Computer simulation of asphaltenes

    No full text
    The review describes theoretical approaches based on computer simulations at various levels of details (from quantum chemical calculations to atomistic and coarse-grained models) to study asphaltenes and systems containing asphaltenes. The used methods are described, their advantages and disadvantages are discussed in terms of computational costs and time- and spatial-scales available for simulations. The results of studies of the asphaltenes interactions with each other and their aggregation behavior in low-molecular solvents are presented. The most promising approaches of computer simulations of asphaltenes-based systems are determined
    corecore