429 research outputs found
Spin light of electron in matter
We further generalize the powerful method, which we have recently developed
for description of the background matter influence on neutrinos, for the case
of an electron moving in matter. On the basis of the modified Dirac equation
for the electron, accounting for the standard model interaction with particles
of the background, we predict and investigate in some detail a new mechanism of
the electromagnetic radiation that is emitted by moving in matter electron due
to its magnetic moment. We have termed this radiation the ``spin light of
electron" in matter and predicted that this radiation can have consequences
accessible for experimental observations in astrophysical and cosmological
settings.Comment: 5 pages in LaTex, in: "Particle Physics at the Year of 250th
Anniversary of Moscow University", ed. by A.Studenikin, World Scientific,
Singapore, 2006, p. 73 (Proceedings of the 12th Lomonosov Conference on
Elementary Particle Physics, August 2005, Moscow
Deformation Behavior of Human Dentin under Uniaxial Compression
Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate
Chiral criticality in doped MnFeSi compounds
The critical spin fluctuations in doped compounds MnFeSi have
been studied by means of ac-susceptibility measurements, polarized neutron
small angle scattering and spin echo spectroscopy. It is shown that these
compounds undergo the transition from the paramagnetic to helimagnetic phase
through continuous, yet well distinguishable crossovers: (i) from paramagnetic
to partially chiral, (ii) from partially chiral to highly chiral fluctuating
state. The crossover points are identified on the basis of combined analysis of
the temperature dependence of ac-susceptibility and polarized SANS data. The
whole transition is marked by two inflection point of the temperature
dependence of ac-susceptibility: the upper one corresponds to the crossover to
partially chiral state at , where the inverse correlation length , the lower one corresponds to the transition to the spin helix
structure. The intermediate crossover to the highly chiral phase is observed at
the inflection point of the first derivative of ac-susceptibility, where
. The temperature crossovers to the highly chiral fluctuating
state is associated with the enhancing influence of the Dzyaloshinskii-Moria
interaction close to .Comment: 5 pages, 5 figures, 1 table, 13 cite
Recommended from our members
Evolution of biological cooperation: An algorithmic approach
This manuscript presents an algorithmic approach to cooperation in biological systems, drawing on fundamental ideas from statistical mechanics and probability theory. Fisher’s geometric model of adaptation suggests that the evolution of organisms well adapted to multiple constraints comes at a significant complexity cost. By utilizing combinatorial models of fitness, we demonstrate that the probability of adapting to all constraints decreases exponentially with the number of constraints, thereby generalizing Fisher’s result. Our main focus is understanding how cooperation can overcome this adaptivity barrier. Through these combinatorial models, we demonstrate that when an organism needs to adapt to a multitude of environmental variables, division of labor emerges as the only viable evolutionary strategy
Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel
KvLm is a prokaryotic voltage-gated K+ (Kv) channel from Listeria monocytogenes. The sequence of the voltage-sensing module (transmembrane segments S1-S4) of KvLm is atypical in that it contains only three of the eight conserved charged residues known to be deterministic for voltage sensing in eukaryotic Kv's. In contrast, the pore module (PM), including the S4-S5 linker and cytoplasmic tail (linker-S5-P-S6-C-terminus) of KvLm, is highly conserved. Here, the full-length (FL)-KvLm and the KvLm-PM only proteins were expressed, purified, and reconstituted into giant liposomes. The properties of the reconstituted FL-KvLm mirror well the characteristics of the heterologously expressed channel in Escherichia coli spheroplasts: a right-shifted voltage of activation, micromolar tetrabutylammonium-blocking affinity, and a single-channel conductance comparable to that of eukaryotic Kv's. Conversely, ionic currents through the PM recapitulate both the conductance and blocking properties of the FL-KvLm, yet the KvLm-PM exhibits only rudimentary voltage dependence. Given that the KvLm-PM displays many of the conduction properties of FL-KvLm and of other eukaryotic Kv's, including strict ion selectivity, we conclude that self-assembly of the PM subunits in lipid bilayers, in the absence of the voltage-sensing module, generates a conductive oligomer akin to that of the native KvLm, and that the structural independence of voltage sensing and PMs observed in eukaryotic Kv channels was initially implemented by nature in the design of prokaryotic Kv channels. Collectively, the results indicate that this robust functional module will prove valuable as a molecular template for coupling new sensors and to elucidate PM residue–specific contributions to Kv conduction properties
Main Ways to Improve Cutting Tools for Machine Wheel Tread Profile
This chapter considers the methods to increase the performance and reliability of the reprofile machining of the wheel tread profile. Proceeding from the fact that both in milling and turning, the cutting tool is a key element to ensure performance and reliability of the manufacturing process, the study considers the methods to increase the performance properties of cutting tools. In particular, the study includes the investigation of the following ways to improve cutting tools (carbide inserts) to machine wheel tread profile: replacement of traditional grades of WC-TiC-Co carbides with more efficient ones based on WC-TiC-TaC-Co; application of special thermally conductive pads, gaskets, and pastes to improve the distribution of heat flows in the cutting zone; and application of modern nanoscale composite multilayer coatings (NMCC). It is noted that even higher performance can be obtained by combining the above three methods, in particular, by combining application of special thermal pads and NMCC
Development of a formalism of discrete element method to study mechanical response of geological materials and media at different scales
A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based discrete element method is proposed in the paper. The approach is based on constructing many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture) of simulated solids. For correct modeling of inelastic deformation and failure of geological materials and media at "high" structural scales (relative to the scale of grains) an implementation of dilatational Nikolaevsky's model of plasticity of rocks within the framework of mathematical formalism of discrete element method is proposed. Perspectives of multiscale modeling of geological materials from grainrelated scale up to macroscopic scale within the same numerical technique (DEM) are discussed
- …